ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci

被引:253
作者
Chung, Taijoon [1 ]
Phillips, Allison R. [1 ]
Vierstra, Richard D. [1 ]
机构
[1] Univ Wisconsin, Dept Genet, Madison, WI 53706 USA
关键词
autophagy; nutrient recycling; vacuole; protein lipidation; Arabidopsis; INNATE IMMUNE-RESPONSE; POLLEN GERMINATION; CELL-DEATH; CONJUGATION SYSTEM; PROTEIN LIPIDATION; LEAF SENESCENCE; PLANT AUTOPHAGY; STARVATION; THALIANA; PATHWAYS;
D O I
10.1111/j.1365-313X.2010.04166.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
P>Autophagic recycling of intracellular plant constituents is maintained at a basal level under normal growth conditions but can be induced in response to nutritional demand, biotic stress, and senescence. One route requires the ubiquitin-fold proteins Autophagy-related (ATG)-8 and ATG12, which become attached to the lipid phosphatidylethanolamine (PE) and the ATG5 protein, respectively, during formation of the engulfing vesicle and delivery of its cargo to the vacuole for breakdown. Here, we genetically analyzed the conjugation machinery required for ATG8/12 modification in Arabidopsis thaliana with a focus on the two loci encoding ATG12. Whereas single atg12a and atg12b mutants lack phenotypic consequences, atg12a atg12b double mutants senesce prematurely, are hypersensitive to nitrogen and fixed carbon starvation, and fail to accumulate autophagic bodies in the vacuole. By combining mutants eliminating ATG12a/b, ATG5, or the ATG10 E2 required for their condensation with a method that unequivocally detects the ATG8-PE adduct, we also show that ATG8 lipidation requires the ATG12-ATG5 conjugate. Unlike ATG8, ATG12 does not associate with autophagic bodies, implying that its role(s) during autophagy is restricted to events before the vacuolar deposition of vesicles. The expression patterns of the ATG12a and ATG12b genes and the effects of single atg12a and atg12b mutants on forming the ATG12-ATG5 conjugate reveal that the ATG12b locus is more important during basal autophagy while the ATG12a locus is more important during induced autophagy. Taken together, we conclude that the formation of the ATG12-ATG5 adduct is essential for ATG8-mediated autophagy in plants by promoting ATG8 lipidation.
引用
收藏
页码:483 / 493
页数:11
相关论文
共 45 条
[1]  
ARNON DI, 1949, PLANT PHYSIOL, V24, P15
[2]   Autophagy in development and stress responses of plants [J].
Bassham, DC ;
Laporte, M ;
Marty, F ;
Moriyasu, Y ;
Ohsumi, Y ;
Olsen, LJ ;
Yoshimoto, K .
AUTOPHAGY, 2006, 2 (01) :2-11
[3]   Plant autophagy-more than a starvation response [J].
Bassham, Diane C. .
CURRENT OPINION IN PLANT BIOLOGY, 2007, 10 (06) :587-593
[4]   The ATG Autophagic Conjugation System in Maize: ATG Transcripts and Abundance of the ATG8-Lipid Adduct Are Regulated by Development and Nutrient Availability [J].
Chung, Taijoon ;
Suttangkakul, Anongpat ;
Vierstra, Richard D. .
PLANT PHYSIOLOGY, 2009, 149 (01) :220-234
[5]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[6]   Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation [J].
Contento, AL ;
Kim, SJ ;
Bassham, DC .
PLANT PHYSIOLOGY, 2004, 135 (04) :2330-2347
[7]   A gateway cloning vector set for high-throughput functional analysis of genes in planta [J].
Curtis, MD ;
Grossniklaus, U .
PLANT PHYSIOLOGY, 2003, 133 (02) :462-469
[8]   Chaperone-mediated autophagy [J].
Dice, J. Fred .
AUTOPHAGY, 2007, 3 (04) :295-299
[9]   The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana [J].
Doelling, JH ;
Walker, JM ;
Friedman, EM ;
Thompson, AR ;
Vierstra, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (36) :33105-33114
[10]   Post-translational regulation in plants employing a diverse set of polypeptide tags [J].
Downes, B ;
Vierstra, RD .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 :393-399