The volume algorithm revisited:: relation with bundle methods

被引:42
作者
Bahiense, L
Maculan, N
Sagastizábal, C
机构
[1] Univ Fed Rio de Janeiro, COPPE Sistemas & Comput, BR-21945970 Rio De Janeiro, Brazil
[2] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
关键词
volume algorithm; bundle methods; Steiner problems;
D O I
10.1007/s10107-002-0357-3
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We revise the Volume Algorithm (VA) for linear programming and relate it to bundle methods. When first introduced, VA was presented as a subgradient-like method for solving the original problem in its dual form. In a way similar to the serious/null steps philosophy of bundle methods, VA produces green, yellow or red steps. In order to give convergence results, we introduce in VA a precise measure for the improvement needed to declare a green or serious step. This addition yields a revised formulation (RVA) that is halfway between VA and a specific bundle method, that we call BVA. We analyze the convergence properties of both RVA and BVA. Finally, we compare the performance of the modified algorithms versus VA on a set of Rectilinear Steiner problems of various sizes and increasing complexity, derived from real world VLSI design instances.
引用
收藏
页码:41 / 69
页数:29
相关论文
共 23 条
[1]  
[Anonymous], 1980, Math Japonica
[2]  
[Anonymous], 1956, INFINITE SEQUENCES S
[3]  
BAHIENSE L, 2002, IN PRESS J COMBINATO
[4]   The volume algorithm: producing primal solutions with a subgradient method [J].
Barahona, F ;
Anbil, R .
MATHEMATICAL PROGRAMMING, 2000, 87 (03) :385-399
[5]  
BARBOZA E, 2002, NETWORKS, V40, P38
[6]  
BONNANS JF, 2003, IN PRESS NUMERICAL O
[7]  
CLAUS A, 1983, 280 U MONTR CTR RECH
[8]   RECTILINEAR STEINER TREE PROBLEM IS NP-COMPLETE [J].
GAREY, MR ;
JOHNSON, DS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (04) :826-834
[9]  
Hiriart-Urruty J. B., 1996, CONVEX ANAL MINIMIZA, V305
[10]   STEINER TREE PROBLEMS [J].
HWANG, FK ;
RICHARDS, DS .
NETWORKS, 1992, 22 (01) :55-89