A Volterra type model for image processing

被引:46
作者
Cottet, GH [1 ]
El Ayyadi, M [1 ]
机构
[1] Univ Grenoble 1, IMAG, LMC, F-38041 Grenoble 9, France
关键词
adaptive neural network; image restoration; nonlinear diffusion; selective filter; time-delay regularization;
D O I
10.1109/83.661179
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a class of time-delay anisotropic diffusion models for image restoration. These models lead to asymptotic states that are selected on the basis of a contrast parameter and bear some analogy with neural networks with Hebbian dynamical learning rules, Numerical examples show that these models are efficient in removing even high levels of noise, while allowing an accurate tracking of the edges.
引用
收藏
页码:292 / 303
页数:12
相关论文
共 18 条
[1]   AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING [J].
ALVAREZ, L ;
GUICHARD, F ;
LIONS, PL ;
MOREL, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) :199-257
[2]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION .2. [J].
ALVAREZ, L ;
LIONS, PL ;
MOREL, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :845-866
[3]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION [J].
CATTE, F ;
LIONS, PL ;
MOREL, JM ;
COLL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (01) :182-193
[4]  
COTTET GH, 1993, MATH COMPUT, V61, P659, DOI 10.1090/S0025-5718-1993-1195422-2
[5]  
COTTET GH, 1991, C R ACAD SCI PARIS, V312
[6]  
COTTET GH, 1996, P 3 IEEE INT C IM PR, P48
[7]  
COTTET GH, 1995, J BIOL SYST, V3, P1131
[8]   THE WEIGHTED PARTICLE METHOD FOR CONVECTION-DIFFUSION EQUATIONS .1. THE CASE OF AN ISOTROPIC VISCOSITY [J].
DEGOND, P ;
MASGALLIC, S .
MATHEMATICS OF COMPUTATION, 1989, 53 (188) :485-507
[9]  
Edwards R, 1996, MATH METHOD APPL SCI, V19, P651, DOI 10.1002/(SICI)1099-1476(19960525)19:8<651::AID-MMA788>3.0.CO
[10]  
2-S