Two-Dimensional Phonon Transport in Supported Graphene

被引:1385
作者
Seol, Jae Hun [1 ]
Jo, Insun [2 ]
Moore, Arden L. [1 ]
Lindsay, Lucas [3 ,4 ]
Aitken, Zachary H. [5 ]
Pettes, Michael T. [1 ]
Li, Xuesong [1 ,6 ]
Yao, Zhen [2 ]
Huang, Rui [5 ]
Broido, David [3 ]
Mingo, Natalio [7 ]
Ruoff, Rodney S. [1 ,6 ]
Shi, Li [1 ,6 ]
机构
[1] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA
[4] Christopher Newport Univ, Dept Phys Comp Sci & Engn, Newport News, VA 23606 USA
[5] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
[6] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[7] CEA, Lab Innovat Technol Energies Nouvelles & Nanomat, F-38054 Grenoble, France
基金
美国国家科学基金会;
关键词
THERMAL-CONDUCTIVITY; FILMS; GRAPHITE; SIO2;
D O I
10.1126/science.1184014
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The reported thermal conductivity (kappa) of suspended graphene, 3000 to 5000 watts per meter per kelvin, exceeds that of diamond and graphite. Thus, graphene can be useful in solving heat dissipation problems such as those in nanoelectronics. However, contact with a substrate could affect the thermal transport properties of graphene. Here, we show experimentally that k of monolayer graphene exfoliated on a silicon dioxide support is still as high as about 600 watts per meter per kelvin near room temperature, exceeding those of metals such as copper. It is lower than that of suspended graphene because of phonons leaking across the graphene-support interface and strong interface-scattering of flexural modes, which make a large contribution to k in suspended graphene according to a theoretical calculation.
引用
收藏
页码:213 / 216
页数:4
相关论文
共 28 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[5]  
DOVE MT, 1993, CAMBRIDGE TOPICS MIN, V4, P29
[6]   Intrinsic and extrinsic corrugation of monolayer graphene deposited on SiO2 [J].
Geringer, V. ;
Liebmann, M. ;
Echtermeyer, T. ;
Runte, S. ;
Schmidt, M. ;
Rueckamp, R. ;
Lemme, M. C. ;
Morgenstern, M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (07)
[7]   Theory of thermopower in two-dimensional graphene [J].
Hwang, E. H. ;
Rossi, E. ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2009, 80 (23)
[8]   Atomic structure of graphene on SiO2 [J].
Ishigami, Masa ;
Chen, J. H. ;
Cullen, W. G. ;
Fuhrer, M. S. ;
Williams, E. D. .
NANO LETTERS, 2007, 7 (06) :1643-1648
[9]   Phonon scattering in silicon films with thickness of order 100 nm [J].
Ju, YS ;
Goodson, KE .
APPLIED PHYSICS LETTERS, 1999, 74 (20) :3005-3007
[10]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710