Expression of CD86 on human marrow CD34+ cells identifies immunocompetent committed precursors of macrophages and dendritic cells

被引:62
作者
Ryncarz, RE
Anasetti, C
机构
[1] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98109 USA
[2] Univ Washington, Dept Med, Div Oncol, Seattle, WA 98195 USA
关键词
D O I
10.1182/blood.V91.10.3892.3892_3892_3900
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Macrophages and dendritic cells derive from a hematopoietic stem cell and the existence of a common committed progenitor has been hypothesized. We have recently found in normal human marrow a subset of CD34(+) cells that constitutively expresses HLA-DR and low levels of CD86, a natural ligand for the T cell costimulation receptor CD28, This CD34(+) subset can elicit responses from allogeneic T cells. In this study, we show that CD34(+)/CD86(+) cells can also present tetanus toroid antigen to memory CD4(+) T cells. CD86 is expressed at low levels in macrophages and high levels in dendritic cells, Therefore, we have tested the hypothesis that CD34(+)/CD86(+) cells are the common precursors of both macrophages and dendritic cells. CD34(+)/CD86(+) marrow cells cultured in granulocyte-macrophage colony-stimulating factor (GM-CSF)-generated macrophages. In contrast, CD34(+)/CD86(-) cells cultured in GM-CSF generated a predominant population of granulocytes. CD34(+)/CD86(+) cells cultured in GM-CSF plus tumor necrosis factor-alpha (TNF-alpha) generated almost exclusively CD1a(+)/CD83(+) dendritic cells. In contrast CD34(+)/CD86(-) cells cultured in GM CSF plus TNF-alpha generated a variety of cell types, including a small population of dendritic cells. In addition, CD34(+)/CD86(+) cells cultured in granulocyte colony-stimulating factor failed to generate CD15(+) granulocytes. Therefore, CD34(+)/CD86(+) cells are committed precursors of both macrophages and dendritic cells. The ontogeny of dendritic cells was recapitulated by stimulation of CD34(+)/CD86(-) cells with TNF-alpha that induced expression of CD86. Subsequent costimulation of CD86(+) cells with GM-CSF plus TNF-alpha lead to expression of CD83 and produced terminal dendritic cell differentiation. Thus, expression of CD86 on hematopoietic progenitor cells is regulated by TNF-alpha and denotes differentiation towards the macrophage or dendritic cell lineages. (C) 1998 by The American Society of Hematology.
引用
收藏
页码:3892 / 3900
页数:9
相关论文
共 42 条
[1]  
ANDREWS RG, 1986, BLOOD, V67, P842
[2]   PRECURSORS OF COLONY-FORMING CELLS IN HUMANS CAN BE DISTINGUISHED FROM COLONY-FORMING CELLS BY EXPRESSION OF THE CD33 AND CD34 ANTIGENS AND LIGHT SCATTER PROPERTIES [J].
ANDREWS, RG ;
SINGER, JW ;
BERNSTEIN, ID .
JOURNAL OF EXPERIMENTAL MEDICINE, 1989, 169 (05) :1721-1731
[3]   MIGRATION PATTERNS OF DENDRITIC CELLS IN THE MOUSE - HOMING TO T-CELL DEPENDENT AREAS OF SPLEEN, AND BINDING WITHIN MARGINAL ZONE [J].
AUSTYN, JM ;
KUPIECWEGLINSKI, JW ;
HANKINS, DF ;
MORRIS, PJ .
JOURNAL OF EXPERIMENTAL MEDICINE, 1988, 167 (02) :646-651
[4]   Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood [J].
Bender, A ;
Sapp, M ;
Schuler, G ;
Steinman, RM ;
Bhardwaj, N .
JOURNAL OF IMMUNOLOGICAL METHODS, 1996, 196 (02) :121-135
[5]   B70/B7-2 IS IDENTICAL TO CD86 AND IS THE MAJOR FUNCTIONAL LIGAND FOR CD28 EXPRESSED ON HUMAN DENDRITIC CELLS [J].
CAUX, C ;
VANBERVLIET, B ;
MASSACRIER, C ;
AZUMA, M ;
OKUMURA, K ;
LANIER, LL ;
BANCHEREAU, J .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 180 (05) :1841-1847
[6]   CD34(+) hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha [J].
Caux, C ;
Vanbervliet, B ;
Massacrier, C ;
DezutterDambuyant, C ;
deSaintVis, B ;
Jacquet, C ;
Yoneda, K ;
Imamura, S ;
Schmitt, D ;
Banchereau, J .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 184 (02) :695-706
[7]   GM-CSF AND TNF-ALPHA COOPERATE IN THE GENERATION OF DENDRITIC LANGERHANS CELLS [J].
CAUX, C ;
DEZUTTERDAMBUYANT, C ;
SCHMITT, D ;
BANCHEREAU, J .
NATURE, 1992, 360 (6401) :258-261
[8]  
CIVIN CI, 1984, J IMMUNOL, V133, P157
[9]  
CIVIN CI, 1987, EXP HEMATOL, V15, P10
[10]   DNA-based immunization by in vivo transfection of dendritic cells [J].
Condon, C ;
Watkins, SC ;
Celluzzi, CM ;
Thompson, K ;
Falo, LD .
NATURE MEDICINE, 1996, 2 (10) :1122-1128