Exploring heterogeneity in tumour data using Markov chain Monte Carlo

被引:3
作者
de Gunst, MCM
Dewanji, A
Luebeck, EG
机构
[1] Free Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
[2] Indian Stat Inst, Appl Stat Unit, Kolkata 700108, India
[3] Fred Hutchinson Canc Res Ctr, Publ Hlth Sci Div, Seattle, WA 98109 USA
关键词
Markov chain Monte Carlo (MCMC); inter-individual variation; stochastic growth model; premalignant lesions; N-nitrosomorpholine (NNM);
D O I
10.1002/sim.1441
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe a Bayesian approach to incorporate between-individual heterogeneity associated with parameters of complicated biological models. We emphasize the use of the Markov chain Monte Carlo (MCMC) method in this context and demonstrate the implementation and use of MCMC by analysis of simulated overdispersed Poisson counts and by analysis of an experimental data set on preneoplastic liver lesions (their number and sizes) in the presence of heterogeneity. These examples show that MCMC-based estimates, derived from the posterior distribution with uniform priors, may agree well with maximum likelihood estimates (if available). However, with heterogeneous parameters, maximum likelihood estimates can be difficult to obtain, involving many integrations. In this case, the MCMC method offers substantial computational advantages. Copyright (C) 2003 John Wiley Sons, Ltd.
引用
收藏
页码:1691 / 1707
页数:17
相关论文
共 17 条
[1]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[2]   A method for parametric estimation of the number and size distribution of cell clusters from observations in a section plane [J].
de Gunst, MCM ;
Luebeck, EG .
BIOMETRICS, 1998, 54 (01) :100-112
[3]   A STOCHASTIC 2-STAGE MODEL FOR CANCER RISK ASSESSMENT .2. THE NUMBER AND SIZE OF PREMALIGNANT CLONES [J].
DEWANJI, A ;
VENZON, DJ ;
MOOLGAVKAR, SH .
RISK ANALYSIS, 1989, 9 (02) :179-187
[4]   A biologically based model for the analysis of premalignant foci of arbitrary shape [J].
Dewanji, A ;
Luebeck, EG ;
Moolgavkar, SH .
MATHEMATICAL BIOSCIENCES, 1996, 135 (01) :55-68
[5]   Distinguishing effects on tumor multiplicity and growth rate in chemoprevention experiments [J].
Dunson, DB ;
Dinse, GE .
BIOMETRICS, 2000, 56 (04) :1068-1075
[6]  
GELFAND AE, 1994, J COMPUTATIONAL GRAP, V3, P261, DOI DOI 10.2307/1390911
[7]  
Geyer CJ, 1992, STAT SCI, V7, P473, DOI [10.1214/ss/1177011137, DOI 10.1214/SS/1177011137]
[8]   RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA USING GIBBS SAMPLING [J].
GILKS, WR ;
WANG, CC ;
YVONNET, B ;
COURSAGET, P .
BIOMETRICS, 1993, 49 (02) :441-453
[9]  
GILKS WR, 1993, J R STAT SOC B, V55, P39
[10]  
GILKS WR, 1996, MARKOV CHAIN MONTE C, P118