Distinct dynamics of HISTONE3 variants between the two fertilization products in plants

被引:218
作者
Ingouff, Mathieu
Hamamura, Yuki
GourgueS, Mathieu
Higashiyama, Tetsuya
Berger, Frederic
机构
[1] Natl Univ Singapore, Temasek Life Sci Lab, Chromatin & Reprod Grp, Singapore 117604, Singapore
[2] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Tokyo 1130033, Japan
[3] UMR Interact Plantes Mircoorganismes & Sante Vege, F-06903 Sophia Antipolis, France
[4] Nagoya Univ, Grad Sch Sci, Div Biol Sci, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
DEVBIO;
D O I
10.1016/j.cub.2007.05.019
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sexual reproduction involves epigenetic reprogramming [1] comprising DNA methylation [2] and histone modifications [3-6]. In addition, dynamics of HISTONE3 (H3) variant H3.3 upon fertilization are conserved in animals, suggesting an essential role [7-9]. In contrast to H3, H3.3 marks actively transcribed regions of the genome and can be deposited in a replication-independent manner [10, 11]. Although H3 variants are conserved in plants, their dynamics during fertilization have remained unexplored. We overcame technical limitations to live imaging of the fertilization process in Arabidopsis thaliana and studied dynamics of the male-gamete-specific H3.3 [12] and the centromeric Histone Three Related 12 (HTR12) [13]. The double-fertilization process in plants produces the zygote and the embryo-nourishing endosperm [14]. We show that the zygote is characterized by replication-independent removal of paternal H3.3 and homogeneous incorporation of parental chromatin complements. In the endosperm, the paternal H3.3 is passively diluted by replication while the paternal chromatin remains segregated apart from the maternal chromatin (gonomery). Hence epigenetic regulations distinguish the two products of fertilization in plants. H3.3-replication-independent dynamics and gonomery also mark the first zygotic divisions in animal species [5, 15]. We thus propose the convergent selection of parental epigenetic imbalance involving H3 variants in sexually reproducing organisms.
引用
收藏
页码:1032 / 1037
页数:6
相关论文
共 48 条
[1]  
Morgan H.D., Santos F., Green K., Dean W., Reik W., Epigenetic reprogramming in mammals, Hum. Mol. Genet., 14, (2005)
[2]  
Reik W., Dean W., Walter J., Epigenetic reprogramming in mammalian development, Science, 293, pp. 1089-1093, (2001)
[3]  
Krishnamoorthy T., Chen X., Govin J., Cheung W.L., Dorsey J., Schindler K., Winter E., Allis C.D., Guacci V., Khochbin S., Et al., Phosphorylation of histone H4 Ser1 regulates sporulation in yeast and is conserved in fly and mouse spermatogenesis, Genes Dev., 20, pp. 2580-2592, (2006)
[4]  
Liu H., Kim J.M., Aoki F., Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos, Development, 131, pp. 2269-2280, (2004)
[5]  
van der Heijden G.W., Dieker J.W., Derijck A.A., Muller S., Berden J.H., Braat D.D., van der Vlag J., de Boer P., Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote, Mech. Dev., 122, pp. 1008-1022, (2005)
[6]  
Delaval K., Govin J., Cerqueira F., Rousseaux S., Khochbin S., Feil R., Differential histone modifications mark mouse imprinting control regions during spermatogenesis, EMBO J., 26, pp. 720-729, (2007)
[7]  
Ooi S.L., Priess J.R., Henikoff S., Histone H3.3 variant dynamics in the germline of Caenorhabditis elegans, PLoS Genet., 2, (2006)
[8]  
Torres-Padilla M.E., Bannister A.J., Hurd P.J., Kouzarides T., Zernicka-Goetz M., Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos, Int. J. Dev. Biol., 50, pp. 455-461, (2006)
[9]  
Loppin B., Bonnefoy E., Anselme C., Laurencon A., Karr T.L., Couble P., The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus, Nature, 437, pp. 1386-1390, (2005)
[10]  
Tagami H., Ray-Gallet D., Almouzni G., Nakatani Y., Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis, Cell, 116, pp. 51-61, (2004)