A higher dimensional generalization of the geodesic part of the Goldberg-Sachs theorem

被引:30
作者
Durkee, Mark [1 ]
Reall, Harvey S. [1 ]
机构
[1] Univ Cambridge, DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England
关键词
D O I
10.1088/0264-9381/26/24/245005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In more than four spacetime dimensions, a multiple Weyl-aligned null direction (WAND) need not be geodesic. It is proved that any higher dimensional Einstein spacetime admitting a non-geodesic multiple WAND also admits a geodesic multiple WAND. All five-dimensional Einstein spacetimes admitting a non-geodesic multiple WAND are determined.
引用
收藏
页数:14
相关论文
共 11 条
[1]   Classification of the Weyl tensor in higher dimensions and applications [J].
Coley, A. .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (03)
[2]   Classification of the Weyl tensor in higher dimensions [J].
Coley, A ;
Milson, R ;
Pravda, V ;
Pravdová, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (07) :L35-L41
[3]   Type II Einstein spacetimes in higher dimensions [J].
Durkee, Mark .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (19)
[4]   Particle and light motion in a space-time of a five-dimensional rotating black hole [J].
Frolov, V ;
Stojkovic, D .
PHYSICAL REVIEW D, 2003, 68 (06)
[5]   Algebraically special axisymmetric solutions of the higher-dimensional vacuum Einstein equation [J].
Godazgar, Mahdi ;
Reall, Harvey S. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (16)
[6]  
Goldberg J. N., 1962, Acta Phys. Pol. Suppl., V22, P13
[7]   AdS-CFT correspondence and a new positive energy conjecture for general relativity [J].
Horowitz, GT ;
Myers, RC .
PHYSICAL REVIEW D, 1999, 59 (02)
[8]   Type D Einstein spacetimes in higher dimensions [J].
Pravda, V. ;
Pravdova, A. ;
Ortaggio, M. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (17) :4407-4428
[9]   Bianchi identities in higher dimensions [J].
Pravda, V ;
Pravdová, A ;
Coley, A ;
Milson, R .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (12) :2873-2897
[10]  
Stephani H., 2009, Exact solutions of Einstein's field equations