On a Resolvent Estimate of the Stokes Equation on an Infinite Layer Part 2, λ=0 Case

被引:34
作者
Abe, Takayuki [1 ]
Shibata, Yoshihiro [1 ,2 ]
机构
[1] Waseda Univ, Sch Sci & Engn, Dept Math Sci, Shinjuku Ku, Ohkubo 3-4-1, Tokyo 1698555, Japan
[2] Waseda Univ, Adv Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
关键词
Infinite layer; Stokes resolvent problem; Navier-Stokes equations; time global existence; small initial data; Poiseuille flow; Couette flow;
D O I
10.1007/s00021-003-0075-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the standard L-p estimate of solutions to the Stokes resolvent problem on an infinite layer in the case where lambda is close to zero (see eq. (1.1)). Combining this result with that in [1], we find that the Stokes operator on an infinite layer generates an analytic semigroup. As an application, we prove the local stability of some steady flows.
引用
收藏
页码:245 / 274
页数:30
相关论文
共 9 条
[1]  
Abe T., PREPRINT
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]   GENERALIZED RESOLVENT ESTIMATES FOR THE STOKES SYSTEM IN BOUNDED AND UNBOUNDED-DOMAINS [J].
FARWIG, R ;
SOHR, H .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (04) :607-643
[4]  
Galdi G.P., 1994, Springer Tracts Nat. Philos., V38
[5]  
Hormander L., 1983, GRUND MATH WISS, V256
[7]  
Kato T., 1962, Rend. Semin. Mat. Univ. Padova, V32, P243
[8]  
Miyakawa T., 1994, MATH J TOYAMA U, V17, P115
[9]  
Stein EM, 1970, Princeton Mathematical Series