Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes

被引:238
作者
Genetos, Damian C.
Kephart, Curtis J.
Zhang, Yue
Yellowley, Clare E.
Donahue, Henry J. [1 ]
机构
[1] Penn State Univ, Coll Med, Dept Orthopaed & Rehabil, Div Musculoskeletal Sci, Hershey, PA 17033 USA
[2] Univ Calif Davis, Dept Orthopaed Surg, Sacramento, CA 95817 USA
[3] Univ Calif Davis, Sch Vet Med, Dept Anat Physiol & Cell Biol, Davis, CA 95616 USA
关键词
D O I
10.1002/jcp.21021
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mechanical loads are required for optimal bone mass. One mechanism whereby mechanical loads are transduced into localized cellular signals is strain-induced fluid flow through lacunae and canaliculi of bone. Gap junctions (GJs) between osteocytes and osteoblasts provides a mechanism whereby flow-induced signals are detected by osteocytes and transduced to osteoblasts. We have demonstrated the importance of GJ and gap junctional intercellular communication (GJIC) in intracellular calcium and prostaglandin E-2 (PGE(2)) increases in response to flow. Unapposed connexons, or hemichannels, are themselves functional and may constitute a novel mechanotransduction mechanism. Using MC3T3-E1 osteoblasts and MLO-Y4 osteocytes, we examined the time course and mechanism of hemichannel activation in response to fluid flow, the composition of the hemichannels, and the role of hemichannels in flow-induced ATP release. We demonstrate that fluid flow activates hemichannels in MLO-Y4, but not MC3T3-E1, through a mechanism involving protein kinase C, which induces ATP and PGE2 release.
引用
收藏
页码:207 / 214
页数:8
相关论文
共 72 条
[1]   Oscillating fluid flow regulates gap junction communication in osteocytic MLO-Y4 cells by an ERK1/2 MAP kinase-dependent mechanism [J].
Alford, AI ;
Jacobs, CR ;
Donahue, HJ .
BONE, 2003, 33 (01) :64-70
[2]   Establishment and characterization of an osteocyte-like cell line, MLO-Y4 [J].
Bonewald, LF .
JOURNAL OF BONE AND MINERAL METABOLISM, 1999, 17 (01) :61-65
[3]  
Brambilla R, 2001, ANN NY ACAD SCI, V939, P54
[4]  
Bruzzone S, 2001, FASEB J, V15, P10
[5]  
BUCKLEY MJ, 1988, BONE MINER, V4, P225
[6]   FUNCTION OF OSTEOCYTES IN BONE - THEIR ROLE IN MECHANOTRANSDUCTION [J].
BURGER, EH ;
KLEINNULEND, J ;
VANDERPLAS, A ;
NIJWEIDE, PJ .
JOURNAL OF NUTRITION, 1995, 125 (07) :S2020-S2023
[7]   PGE2 is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain [J].
Cheng, BX ;
Kato, Y ;
Zhao, S ;
Luo, J ;
Sprague, E ;
Bonewald, LF ;
Jiang, JX .
ENDOCRINOLOGY, 2001, 142 (08) :3464-3473
[8]   Mechanical strain opens connexin 43 hemichannels in osteocytes: A novel mechanism for the release of prostaglandin [J].
Cherian, PP ;
Siller-Jackson, AJ ;
Gu, SM ;
Wang, X ;
Bonewald, LF ;
Sprague, E ;
Jiang, JX .
MOLECULAR BIOLOGY OF THE CELL, 2005, 16 (07) :3100-3106
[9]   Effects of mechanical strain on the function of gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor [J].
Cherian, PP ;
Cheng, BX ;
Gu, SM ;
Sprague, E ;
Bonewald, LF ;
Jiang, JX .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (44) :43146-43156
[10]   Storage and release of ATP from Astrocytes in culture [J].
Coco, S ;
Calegari, F ;
Pravettoni, E ;
Pozzi, D ;
Taverna, E ;
Rosa, P ;
Matteoli, M ;
Verderio, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (02) :1354-1362