Kinetic isotopic effects in oxidative dehydrogenation of propane on vanadium oxide catalysts

被引:160
作者
Chen, KD
Iglesia, E [1 ]
Bell, AT
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
propane; oxidative dehydrogenation; vanadium oxide;
D O I
10.1006/jcat.2000.2832
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kinetic isotopic effects (KIEs) for oxidative dehydrogenation of propane were measured on 10 wt% V2O5/ZrO2. Normal KIEs were obtained using CH3CH2CH3 and CD3CD2CD3 as reactants for primary dehydrogenation (2.8) and combustion (1.9) of propane and for secondary combustion of propene (2.6), suggesting that in all cases C-H bond dissociation is a kinetically relevant step. CH3CH2CH3 and CH3CD2CH3 reactants led to normal KIEs for dehydrogenation (2.7) and combustion (1.8) of propane, but to a very small KIE (1.1) for propene combustion. These results show that the methylene C-H bond is activated in the rate-determining steps for propane dehydrogenation and combustion reactions. The rate-determining step in secondary propene combustion involves the allylic C-H bond. In each reaction, the weakest C-H bond in the reactant is cleaved in the initial C-H bond activation step. The measured propane oxidative dehydrogenation KIEs are in agreement with theoretical estimates using a sequence of elementary steps, reaction rate expression, and transition state theory. The much smaller KIE for propane oxidative dehydrogenation (2.8) than the maximum KIE (6) expected for propane thermal dehydrogenation indicates the participation of lattice oxygen. The different KIE values for propane primary dehydrogenation and combustion suggest that these two reactions involve different lattice oxygen sites. (C) 2000 Academic Press.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 19 条