Processing of recombination intermediates by the RuvABC proteins

被引:379
作者
West, SC [1 ]
机构
[1] Imperial Canc Res Fund, Clare Hall Labs, S Mimms EN6 3LD, Herts, England
关键词
DNA repair; Holliday junction; resolvase; helicase; branch migration;
D O I
10.1146/annurev.genet.31.1.213
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The RuvA, RuvB, and RuvC proteins in Escherichia coli play important roles in the late stages of homologous genetic recombination and the recombinational repair of damaged DNA. Two proteins, RuvA and RuvB, form a complex that promotes ATP-dependent branch migration of Holliday junctions, a process that is important for the formation of heteroduplex DNA. Individual roles for each protein have been defined, with RuvA acting as a specificity factor that targets RuvB, the branch migration motor, to the junction. Structural studies indicate that two RuvA tetramers sandwich the junction and hold it in an unfolded square-planar configuration. Hexameric rings of RuvB face each other across the junction and promote a novel dual helicase action that "pumps" DNA through the RuvAB complex, using the free energy provided by ATP hydrolysis. The third protein, RuvC endonuclease, resolves the Holliday junction by introducing nicks into two DNA strands. Genetic and biochemical studies indicate that branch migration and resolution are coupled by direct interactions between the three proteins, possibly by the formation of a RuvABC complex.
引用
收藏
页码:213 / 244
页数:32
相关论文
共 203 条
[1]   SEMIDOMINANT SUPPRESSORS OF SRS2 HELICASE MUTATIONS OF SACCHAROMYCES-CEREVISIAE MAP IN THE RAD51 GENE, WHOSE SEQUENCE PREDICTS A PROTEIN WITH SIMILARITIES TO PROKARYOTIC RECA PROTEINS [J].
ABOUSSEKHRA, A ;
CHANET, R ;
ADJIRI, A ;
FABRE, F .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (07) :3224-3234
[2]   Bypass of DNA heterologies during RuvAB-mediated three- and four-strand branch migration [J].
Adams, DE ;
West, SC .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 263 (04) :582-596
[3]   UNWINDING OF CLOSED CIRCULAR DNA BY THE ESCHERICHIA-COLI RUVA AND RUVB RECOMBINATION REPAIR PROTEINS [J].
ADAMS, DE ;
WEST, SC .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 247 (03) :404-417
[4]   RELAXING AND UNWINDING ON HOLLIDAY - DNA HELICASE-MEDIATED BRANCH MIGRATION [J].
ADAMS, DE ;
WEST, SC .
MUTATION RESEARCH-DNA REPAIR, 1995, 337 (03) :149-159
[5]   DISSOCIATION OF RECA FILAMENTS FROM DUPLEX DNA BY THE RUVA AND RUVB DNA-REPAIR PROTEINS [J].
ADAMS, DE ;
TSANEVA, IR ;
WEST, SC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (21) :9901-9905
[6]   ATOMIC-STRUCTURE OF THE RUVC RESOLVASE - A HOLLIDAY JUNCTION-SPECIFIC ENDONUCLEASE FROM ESCHERICHIA-COLI [J].
ARIYOSHI, M ;
VASSYLYEV, DG ;
IWASAKI, H ;
NAKAMURA, H ;
SHINAGAWA, H ;
MORIKAWA, K .
CELL, 1994, 78 (06) :1063-1072
[7]  
ASAI T, 1994, GENETICS, V137, P895
[8]   D-LOOPS AND R-LOOPS - ALTERNATIVE MECHANISMS FOR THE INITIATION OF CHROMOSOME-REPLICATION IN ESCHERICHIA-COLI [J].
ASAI, T ;
KOGOMA, T .
JOURNAL OF BACTERIOLOGY, 1994, 176 (07) :1807-1812
[9]   ANALYSIS OF THE RUV LOCUS OF ESCHERICHIA-COLI K-12 AND IDENTIFICATION OF THE GENE-PRODUCT [J].
ATTFIELD, PV ;
BENSON, FE ;
LLOYD, RG .
JOURNAL OF BACTERIOLOGY, 1985, 164 (01) :276-281
[10]   NUCLEOTIDE-SEQUENCE AND TRANSCRIPTIONAL REGULATION OF THE YEAST RECOMBINATIONAL REPAIR GENE RAD51 [J].
BASILE, G ;
AKER, M ;
MORTIMER, RK .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (07) :3235-3246