Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism

被引:130
作者
Prakash, B [1 ]
Renault, L [1 ]
Praefcke, GJK [1 ]
Herrmann, C [1 ]
Wittinghofer, A [1 ]
机构
[1] Max Planck Inst Mol Physiol, D-44227 Dortmund, Germany
关键词
crystal structure; GTPase mechanism; GTP-binding protein; interferon;
D O I
10.1093/emboj/19.17.4555
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The interferon-gamma-induced guanylate-binding protein 1 (GBP1) belongs to a special class of large GTP-binding proteins of 60-100 kDa with unique characteristics. Here we present the structure of human GBP1 in complex with the non-hydrolysable GTP analogue GppNHp. Basic features of guanine nucleotide binding, such as the P-loop orientation and the Mg2+ co-ordination, are analogous to those of Ras-related and heterotrimeric GTP-binding proteins. However, the glycosidic bond and thus the orientation of the guanine base and its interaction with the protein are very different. Furthermore, two unique regions around the base and the phosphate-binding areas, the guanine and the phosphate caps, respectively, give the nucleotide-binding site a unique appearance not found in the canonical GTP-binding proteins. The phosphate cap, which constitutes the region analogous to switch I, completely shields the phosphate-binding site from solvent such that a potential GTPase-activating protein cannot approach. This has consequences for the GTPase mechanism of hGBP1 and possibly of other large GTP-binding proteins.
引用
收藏
页码:4555 / 4564
页数:10
相关论文
共 59 条
[1]   Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras [J].
Ahmadian, MR ;
Stege, P ;
Scheffzek, K ;
Wittinghofer, A .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (09) :686-689
[2]   Interferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virus [J].
Anderson, SL ;
Carton, JM ;
Lou, J ;
Xing, L ;
Rubin, BY .
VIROLOGY, 1999, 256 (01) :8-14
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides [J].
Barylko, B ;
Binns, D ;
Lin, KM ;
Atkinson, MAL ;
Jameson, DM ;
Yin, HL ;
Albanesi, JP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (06) :3791-3797
[5]   CRYSTAL-STRUCTURE OF ACTIVE ELONGATION-FACTOR TU REVEALS MAJOR DOMAIN REARRANGEMENTS [J].
BERCHTOLD, H ;
RESHETNIKOVA, L ;
REISER, COA ;
SCHIRMER, NK ;
SPRINZL, M ;
HILGENFELD, R .
NATURE, 1993, 365 (6442) :126-132
[6]   DIFFERENTIAL REGULATION OF RASGAP AND NEUROFIBROMATOSIS GENE-PRODUCT ACTIVITIES [J].
BOLLAG, G ;
MCCORMICK, F .
NATURE, 1991, 351 (6327) :576-579
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   INTERFERON-INDUCED GUANYLATE-BINDING PROTEINS LACK AN N(T)KXD CONSENSUS MOTIF AND BIND GMP IN ADDITION TO GDP AND GTP [J].
CHENG, YSE ;
PATTERSON, CE ;
STAEHELI, P .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (09) :4717-4725
[9]  
CHENG YSE, 1983, J BIOL CHEM, V258, P7746
[10]   STRUCTURES OF ACTIVE CONFORMATIONS OF G(I-ALPHA-1) AND THE MECHANISM OF GTP HYDROLYSIS [J].
COLEMAN, DE ;
BERGHUIS, AM ;
LEE, E ;
LINDER, ME ;
GILMAN, AG ;
SPRANG, SR .
SCIENCE, 1994, 265 (5177) :1405-1412