Neural control of aging skeletal muscle

被引:187
作者
Delbono, O
机构
[1] Wake Forest Univ, Sch Med, Dept Physiol & Pharmacol, Winston Salem, NC 27157 USA
[2] Wake Forest Univ, Sch Med, Dept Internal Med, Winston Salem, NC 27157 USA
[3] Wake Forest Univ, Sch Med, Gerontol & Neurosci Program, Winston Salem, NC 27157 USA
关键词
aging; denervation; insulin-like growth factor 1; sarcopenia; skeletal muscle;
D O I
10.1046/j.1474-9728.2003.00011.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Functional and structural decline in the neuromuscular system with aging has been recognized as a cause of impairment in physical performance and loss of independence in the elderly. Alterations in spinal cord motor neurones and at the neuromuscular junction have been identified as evidence of denervation in skeletal muscles from aging mammals, including humans. However, the reciprocal influences of neurones on gene expression in muscle and of muscle on age-related neurodegeneration are poorly understood, and, as a result, interventions aimed at delaying or preventing degeneration of the neural component in aging muscle have been largely unsuccessful. The present article discusses the evidence for neural influence on age-related impairments of skeletal muscle, including a role in excitation-contraction uncoupling. The role of nerves in regulating the trophic actions of insulin-like growth factor-1 (IGF-1) and other neurotrophic factors is considered as a novel influence on the effects of aging on the neuromuscular junction. A better understanding of nerve-muscle interactions will allow for more rational interventions in the aging neuromuscular system.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 96 条
[1]   Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats [J].
Adams, GR ;
McCue, SA .
JOURNAL OF APPLIED PHYSIOLOGY, 1998, 84 (05) :1716-1722
[2]   AGE-RELATED-CHANGES IN EXPRESSION OF THE NEURAL CELL-ADHESION MOLECULE IN SKELETAL-MUSCLE - A COMPARATIVE-STUDY OF NEWBORN, ADULT AND AGED RATS [J].
ANDERSSON, AM ;
OLSEN, M ;
ZHERNOSEKOV, D ;
GAARDSVOLL, H ;
KROG, L ;
LINNEMANN, D ;
BOCK, E .
BIOCHEMICAL JOURNAL, 1993, 290 :641-648
[3]  
BaliceGordon RJ, 1997, MUSCLE NERVE, pS83
[4]   Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function [J].
Barton-Davis, ER ;
Shoturma, DI ;
Musaro, A ;
Rosenthal, N ;
Sweeney, HL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15603-15607
[5]   Epidemiology of sarcopenia among the elderly in New Mexico [J].
Baumgartner, RN ;
Koehler, KM ;
Gallagher, D ;
Romero, L ;
Heymsfield, SB ;
Ross, RR ;
Garry, PJ ;
Lindeman, RD .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1998, 147 (08) :755-763
[6]   Regulation of NGF-family ligands and receptors in adulthood and senescence: correlation to degenerative and regenerative changes in cutaneous innervation [J].
Bergman, E ;
Ulfhake, B ;
Fundin, BT .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (08) :2694-2706
[7]   Muscle activity and muscle agrin regulate the organization of cytoskeletal proteins and attached acetylcholine receptor (AChR) aggregates in skeletal muscle fibers [J].
Bezakova, G ;
Lomo, T .
JOURNAL OF CELL BIOLOGY, 2001, 153 (07) :1453-1463
[8]   CELLULAR-PATTERN OF TYPE-I INSULIN-LIKE GROWTH-FACTOR RECEPTOR GENE-EXPRESSION DURING MATURATION OF THE RAT-BRAIN - COMPARISON WITH INSULIN-LIKE GROWTH FACTOR-I AND FACTOR-II [J].
BONDY, C ;
WERNER, H ;
ROBERTS, CT ;
LEROITH, D .
NEUROSCIENCE, 1992, 46 (04) :909-923
[9]   Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation [J].
Boulanger, L ;
Poo, M .
NATURE NEUROSCIENCE, 1999, 2 (04) :346-351
[10]  
BROOKS SV, 1994, MED SCI SPORT EXER, V26, P432