An optimal multiedge detector for SAR image segmentation

被引:239
作者
Fjortoft, R [1 ]
Lopes, A
Marthon, P
Cubero-Castan, E
机构
[1] UPS, Ctr Etud Spatiales Biospere CESBIO, CNES, CNRS,UMR 5639, F-31401 Toulouse, France
[2] UPS, Ecole Natl Super Electrotechn Elect Informatique, Inst Rech Informat Toulouse, CNRS,UMR 5505,INP,Lab Informat & Math Appl LIMA, F-31071 Toulouse, France
[3] French Space Agcy CNES, DGA, T, SH,QTIS, F-31401 Toulouse, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1998年 / 36卷 / 03期
关键词
edge detection; multiedge model; region merging; segmentation; speckle; synthetic aperture radar (SAR); watershed algorithm;
D O I
10.1109/36.673672
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Edge detection is a fundamental issue in image analysis. Due to the presence of speckle, which can be modeled as a strong, multiplicative noise, edge detection in synthetic aperture radar (SAR) images is extremely difficult, and edge detectors developed for optical images are inefficient. Several robust operators have been developed for the detection of isolated step edges in speckled images. We propose a new step-edge detector for SAR images, which is optimal in the minimum mean square error (MSSE) sense under a stochastic multiedge model. It computes a normalized ratio of exponentially weighted averages (ROEWA) on opposite sides of the central pixel. This is done in the horizontal and vertical direction, and the magnitude of the two components yields an edge strength map. Thresholding of the edge strength map by a modified version of the watershed algorithm and region merging to eliminate false edges complete an efficient segmentation scheme. Experimental results obtained from simulated SAR images as well as ERS-1 data are presented.
引用
收藏
页码:793 / 802
页数:10
相关论文
共 21 条
  • [1] BARALDI A, 1995, P IGARSS, P89
  • [2] ON DETECTING EDGES IN SPECKLE IMAGERY
    BOVIK, AC
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1988, 36 (10): : 1618 - 1627
  • [3] COOK R, 1996, SPIE, V2958, P30
  • [4] COOK R., 1994, P SOC PHOTO-OPT INS, V2316, P92, DOI DOI 10.1117/12.197529
  • [5] FJORTOFT R, 1995, P ACCV, V3, P87
  • [6] FORST VS, 1982, P IGARSS
  • [7] FROST VS, 1982, IEEE T PATTERN ANAL, V4, P165
  • [8] Grimaud M., 1992, SPIE, V1769, P292
  • [9] Marthon P., 1994, Proceedings of the SPIE - The International Society for Optical Engineering, V2315, P669, DOI 10.1117/12.196767
  • [10] Geodesic saliency of watershed contours and hierarchical segmentation
    Najman, L
    Schmitt, M
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1996, 18 (12) : 1163 - 1173