Regression analysis of spatial data

被引:448
作者
Beale, Colin M. [4 ]
Lennon, Jack J. [4 ]
Yearsley, Jon M. [1 ,2 ]
Brewer, Mark J. [3 ]
Elston, David A. [3 ]
机构
[1] Univ Lausanne, Dept Ecol & Evolut, CH-1015 Lausanne, Switzerland
[2] Univ Coll Dublin, UCD Sci Ctr, Sch Biol & Environm Sci, Dublin 4, Ireland
[3] Biomath & Stat Scotland, Aberdeen AB15 8QH, Scotland
[4] Macaulay Inst, Aberdeen AB15 8QH, Scotland
关键词
Conditional autoregressive; generalized least squares; macroecology; ordinary least squares; simultaneous autoregressive; spatial analysis; spatial autocorrelation; spatial eigenvector analysis; SPECIES DISTRIBUTIONAL DATA; RED HERRINGS; GEOGRAPHICAL ECOLOGY; STATISTICAL TESTS; LINEAR-MODELS; MELES-MELES; AUTOCORRELATION; COLONIES; ACCOUNT; SCALES;
D O I
10.1111/j.1461-0248.2009.01422.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional auto-regressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.
引用
收藏
页码:246 / 264
页数:19
相关论文
共 73 条
[1]  
Aitken AC., 1936, P ROYAL SOC EDINBURG, V55, P42, DOI [DOI 10.1017/S0370164600014346, 10.1017/S0370164600014346]
[2]   To be or not to be valid in testing the significance of the slope in simple quantitative linear models with autocorrelated errors [J].
Alpargu, G ;
Dutilleul, P .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (03) :165-180
[3]  
[Anonymous], 2000, WINBUGS VERSION 1 3
[4]   An autologistic model for the spatial distribution of wildlife [J].
Augustin, NH ;
Mugglestone, MA ;
Buckland, ST .
JOURNAL OF APPLIED ECOLOGY, 1996, 33 (02) :339-347
[5]   Species distribution models and ecological theory: A critical assessment and some possible new approaches [J].
Austin, Mike .
ECOLOGICAL MODELLING, 2007, 200 (1-2) :1-19
[6]  
Ayinde Kayode, 2007, Journal of Mathematics and Statistics, V3, P196
[7]   Error and uncertainty in habitat models [J].
Barry, Simon ;
Elith, Jane .
JOURNAL OF APPLIED ECOLOGY, 2006, 43 (03) :413-423
[8]   Red herrings remain in geographical ecology: a reply to Hawkins et al. (2007) [J].
Beale, Colin M. ;
Lennon, Jack J. ;
Elston, David A. ;
Brewer, Mark J. ;
Yearsley, Jonathan M. .
ECOGRAPHY, 2007, 30 (06) :845-847
[9]   A comparison of simultaneous autoregressive and generalized least squares models for dealing with spatial autocorrelation [J].
Begueria, S. ;
Pueyo, Y. .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2009, 18 (03) :273-279
[10]  
Bellier E, 2007, ECOGRAPHY, V30, P385, DOI [10.1111/j.2007.0906-7590.04911.x, 10.1111/j.0906-7590.2007.04911.x]