Formation of supported lipid bilayer membranes on SiO2 from proteoliposomes containing transmembrane proteins

被引:100
作者
Granéli, A
Rydström, J
Kasemo, B
Höök, F
机构
[1] Chalmers Univ Technol, Dept Chem Phys Appl Phys, S-41296 Gothenburg, Sweden
[2] Univ Gothenburg, Dept Biochem & Biophys, Gothenburg, Sweden
关键词
D O I
10.1021/la026231w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the preparation of protein-containing supported phospholipid bilayers (SPBs) on silica (SiO2). The bilayers are formed from small proteoliposomes, which convert to an SPB when the liposomes adsorb on the surface. The kinetics of this conversion process was followed in real time, using the quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) techniques. The proteoliposomes were prepared by reconstitution of two different proteins into small unilamellar liposomes (diameter similar to 26 nm), creating proteoliposomes with diameters ranging from ca. 50 to 85 nm, depending on protein concentration. The two proteins were proton translocating nicotinamide nucleotide transhydrogenase (TH) from Escherichia coli and gramicidin A (GrA) from Bacillus brevis. The SPB formation process was measured and compared for different protein situations in the liposomes: (i) with the intact TH in the proteoliposomes, (ii) after removal of the water-exposed, hydrophilic domains of TH, and (iii) with GrA-containing proteoliposomes (with no water-soluble domains). In the latter two cases qualitatively similar kinetics were observed as with pure (i.e., without proteins) liposomes. In contrast, the water-exposed hydrophilic domains on TH are found to partially hamper the SPB formation process leaving fractions of nonruptured proteoliposomes on the surface. The latter effect becomes stronger with increasing protein/lipid ratio in the proteoliposomes. A comparison was made between activity measurements of TH-containing proteoliposomes in solution and TH-containing SPBs. The latter results support the conclusions from the QCM-D and SPR measurements.
引用
收藏
页码:842 / 850
页数:9
相关论文
共 56 条
[1]   H-1-NMR STUDY OF GRAMICIDIN-A TRANSMEMBRANE ION CHANNEL - HEAD-TO-HEAD RIGHT-HANDED, SINGLE-STRANDED HELICES [J].
ARSENIEV, AS ;
BARSUKOV, IL ;
BYSTROV, VF ;
LOMIZE, AL ;
OVCHINNIKOV, YA .
FEBS LETTERS, 1985, 186 (02) :168-174
[2]   SIMPLE METHOD FOR PREPARATION OF HOMOGENEOUS PHOSPHOLIPID VESICLES [J].
BARENHOLZ, Y ;
GIBBES, D ;
LITMAN, BJ ;
GOLL, J ;
THOMPSON, TE ;
CARLSON, FD .
BIOCHEMISTRY, 1977, 16 (12) :2806-2810
[3]   Proton translocating nicotinamide nucleotide transhydrogenase from E-coli.: Mechanism of action deduced from its structural and catalytic properties [J].
Bizouarn, T ;
Fjellström, O ;
Meuller, J ;
Axelsson, M ;
Bergkvist, A ;
Johansson, C ;
Karlsson, BG ;
Rydström, J .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1457 (03) :211-228
[4]   ALLOGENEIC STIMULATION OF CYTO-TOXIC T-CELLS BY SUPPORTED PLANAR MEMBRANES [J].
BRIAN, AA ;
MCCONNELL, HM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (19) :6159-6163
[5]   Thiopeptide-supported lipid layers on solid substrates [J].
Bunjes, N ;
Schmidt, EK ;
Jonczyk, A ;
Rippmann, F ;
Beyer, D ;
Ringsdorf, H ;
Graber, P ;
Knoll, W ;
Naumann, R .
LANGMUIR, 1997, 13 (23) :6188-6194
[6]   Scanning force microscopy images of cytochrome c oxidase immobilized in an electrode-supported lipid bilayer membrane [J].
Burgess, JD ;
Jones, VW ;
Porter, MD ;
Rhoten, MC ;
Hawkridge, FM .
LANGMUIR, 1998, 14 (23) :6628-6631
[7]   Observation of the resting and pulsed states of cytochrome c oxidase in electrode-supported lipid bilayer membranes [J].
Burgess, JD ;
Rhoten, MC ;
Hawkridge, FH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (18) :4488-4491
[8]   Cytochrome c oxidase immobilized in stable supported lipid bilayer membranes [J].
Burgess, JD ;
Rhoten, MC ;
Hawkridge, FM .
LANGMUIR, 1998, 14 (09) :2467-2475
[9]   Surface plasmon resonance analysis at a supported lipid monolayer [J].
Cooper, MA ;
Try, AC ;
Carroll, J ;
Ellar, DJ ;
Williams, DH .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1998, 1373 (01) :101-111
[10]   Tethered-bilayer lipid membranes as a support for membrane-active peptides [J].
Cornell, BA ;
Krishna, G ;
Osman, PD ;
Pace, RD ;
Wieczorek, L .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2001, 29 :613-617