Mean field method for the support vector machine regression

被引:19
作者
Gao, JB [1 ]
Gunn, SR
Harris, CJ
机构
[1] Univ New England, Sch Math & Comp Sci, Armidale, NSW 2351, Australia
[2] Univ Southampton, Image Speech & Intelligent Syst Res Grp, Dept Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
support vector machine; mean field method; regression; Gaussian process;
D O I
10.1016/S0925-2312(02)00573-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper deals with two subjects. First, we will show how support vector machine (SVM) regression problem can be solved as the maximum a posteriori prediction in the Bayesian framework. The second part describes an approximation technique that is useful in performing calculations for SVMs based on the mean field algorithm which was originally proposed in Statistical Physics of disordered systems. One advantage is that it handle posterior averages for Gaussian process which are not analytically tractable. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:391 / 405
页数:15
相关论文
共 29 条
[1]  
Barber D, 1997, ADV NEUR IN, V9, P340
[2]  
EVGENIOU T, 1999, 1654 MIT AI LAB
[3]  
GAO J, 2002, MACH LEARN, V22
[4]  
GAO J, 2000, UNPUB IEEE T NEURAL
[5]  
Gunn S. R., 1998, SUPPORT VECTOR MACHI
[6]  
HECKERMAN D, 1995, MACH LEARN, V20, P197, DOI 10.1007/BF00994016
[7]   Bayesian parameter estimation via variational methods [J].
Jaakkola, TS ;
Jordan, MI .
STATISTICS AND COMPUTING, 2000, 10 (01) :25-37
[8]   Variational probabilistic inference and the QMR-DT network [J].
Jaakkola, TS ;
Jordan, MI .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1999, 10 :291-322
[9]  
Joachims T, 1999, ADVANCES IN KERNEL METHODS, P169
[10]  
MacKay D.J., 1997, GAUSSIAN PROCESSES R