Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria

被引:61
作者
Kalies, WD [1 ]
Kwapisz, J [1 ]
VanderVorst, RCAM [1 ]
机构
[1] Georgia Inst Technol, Ctr Dynam Syst & Nonlinear Studies, Atlanta, GA 30332 USA
关键词
D O I
10.1007/s002200050332
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a class of Hamiltonian systems in R-4 the set of homoclinic and heteroclinic orbits which connect saddle-focus equilibria is studied using a variational approach. The oscillatory properties of a saddle-focus equilibrium and the variational nature of the problem give rise to connections in many homotopy classes of the configuration plane punctured at the saddle-foci. This variational approach does not require any assumptions on the intersections of stable and unstable manifolds, such as transversality. Moreover, these connections are shown to be local minimizers of an associated action functional. This result has applications to spatial pattern formation in a class of fourth-order bistable evolution equations.
引用
收藏
页码:337 / 371
页数:35
相关论文
共 51 条
[1]   Spatial chaotic structure of attractors of reaction-diffusion systems [J].
Afraimovich, V ;
Babin, A ;
Chow, SN .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (12) :5031-5063
[2]   RADIATIONLESS OPTICAL SOLITONS WITH OSCILLATING TAILS [J].
AKHMEDIEV, NN ;
BURYAK, AV ;
KARLSSON, M .
OPTICS COMMUNICATIONS, 1994, 110 (5-6) :540-544
[3]  
ALEXANDER JC, 1994, J REINE ANGEW MATH, V446, P49
[4]  
AMBROSETTI A, 1992, CR ACAD SCI I-MATH, V314, P601
[5]  
Amick C. J., 1991, Eur. J. Appl. Math., V3, P97
[6]  
Bates P.W., 1989, Dyn. Rep., V2, P1
[7]  
BELYAKOV LY, 1990, SELECTA MATH SOV, V9, P214
[8]  
BELYAKOV LY, 1984, SELF ORG AUTOWAVES S, P106
[9]  
BREZIS H, 1988, ANAL FUNCTIONNELLE T
[10]  
Buffoni B, 1996, COMMUN PUR APPL MATH, V49, P285, DOI 10.1002/(SICI)1097-0312(199603)49:3<285::AID-CPA3>3.3.CO