BNIP3 upregulation and EndoG translocation in delayed neuronal death in stroke and in hypoxia

被引:87
作者
Zhang, Zhengfeng [1 ]
Yang, Xuefen [1 ]
Zhang, Surong [1 ]
Ma, Xiuli [1 ]
Kong, Jiming [1 ]
机构
[1] Univ Manitoba, Dept Human Anat & Cell Sci, Fac Med, Winnipeg, MB R3E 0W3, Canada
关键词
BNIP3; EndoG; hypoxia; mitochondria; stroke;
D O I
10.1161/STROKEAHA.106.475129
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose - Delayed neuronal death is a hallmark feature of stroke and the primary target of neuroprotective strategies. Caspase-independent apoptosis pathways are suggested as a mechanism for the delayed neuronal injury. Here we test the hypothesis that one of the caspase-independent apoptosis pathways is activated by BNIP3 and mediated by EndoG. Methods - We performed immunohistochemistry, Western blotting, cell transfection, subcellular fractionation, and RNA interfering to analyze the expression and localization of BNIP3 and EndoG in degenerating neurons in models of stroke and hypoxia. Results - BNIP3 was upregulated in brain neurons in a rat model of stroke and in cultured primary neurons exposed to hypoxia. The expressed BNIP3 was localized to mitochondria. Both forced expression of BNIP3 by plasmid transfection and induced expression of BNIP3 by hypoxia in neurons resulted in mitochondrial release and nuclear translocation of EndoG and neuronal cell death. Knockdown of BNIP3 by RNAi inhibited EndoG translocation and protected against hypoxia-induced neuronal death. Conclusions - BNIP3 plays a role in delayed neuronal death in hypoxia and stroke and EndoG is a mediator of the BNIP3-activated neuronal death pathway. The results suggest that BNIP3 may be a new target for neuronal rescue strategies.
引用
收藏
页码:1606 / 1613
页数:8
相关论文
共 24 条
[1]   Expression of the gene encoding the pro-apoptotic BNIP3 protein and stimulation of hypoxia-inducible factor-1α (HIF-1α) protein following focal cerebral ischernia in rats [J].
Althaus, J. ;
Bernaudin, M. ;
Petit, E. ;
Toutain, J. ;
Touzani, O. ;
Rami, A. .
NEUROCHEMISTRY INTERNATIONAL, 2006, 48 (08) :687-695
[2]   Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization [J].
Arnoult, D ;
Gaume, B ;
Karbowski, M ;
Sharpe, JC ;
Cecconi, F ;
Youle, RJ .
EMBO JOURNAL, 2003, 22 (17) :4385-4399
[3]   Specific caspase pathways are activated in the two stages of cerebral infarction [J].
Benchoua, A ;
Guégan, C ;
Couriaud, C ;
Hosseini, H ;
Sampaïo, N ;
Morin, D ;
Onténiente, B .
JOURNAL OF NEUROSCIENCE, 2001, 21 (18) :7127-7134
[4]   SERUM-FREE B27/NEUROBASAL MEDIUM SUPPORTS DIFFERENTIATED GROWTH OF NEURONS FROM THE STRIATUM, SUBSTANTIA-NIGRA, SEPTUM, CEREBRAL-CORTEX, CEREBELLUM, AND DENTATE GYRUS [J].
BREWER, GJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 42 (05) :674-683
[5]   Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia [J].
Bruick, RK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9082-9087
[6]   The pro-cell death Bcl-2 family member, BNIP3, is localized to the nucleus of human glial cells: Implications for glioblastoma multiforme tumor cell survival under hypoxia [J].
Burton, TR ;
Henson, ES ;
Baijal, P ;
Eisenstat, DD ;
Gibson, SB .
INTERNATIONAL JOURNAL OF CANCER, 2006, 118 (07) :1660-1669
[7]   The E1B 19K Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis [J].
Chen, G ;
Ray, R ;
Dubik, D ;
Shi, LF ;
Cizeau, J ;
Bleackley, RC ;
Saxena, S ;
Gietz, RD ;
Greenberg, AH .
JOURNAL OF EXPERIMENTAL MEDICINE, 1997, 186 (12) :1975-1983
[8]   Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells [J].
Daido, S ;
Kanzawa, T ;
Yamamoto, A ;
Takeuchi, H ;
Kondo, Y ;
Kondo, S .
CANCER RESEARCH, 2004, 64 (12) :4286-4293
[9]   Caspase-3-dependent and -independent apoptosis in focal brain ischemia [J].
Didenko, VV ;
Ngo, H ;
Minchew, CL ;
Boudreaux, DJ ;
Widmayer, MA ;
Baskin, DS .
MOLECULAR MEDICINE, 2002, 8 (07) :347-352
[10]   Dynamics of cerebral tissue injury and perfusion after temporary hypoxia-ischemia in the rat - Evidence for region-specific sensitivity and delayed damage [J].
Dijkhuizen, RM ;
Knollema, S ;
van der Worp, HB ;
Ter Horst, GJ ;
De Wildt, DJ ;
van der Sprenkel, JWB ;
Tulleken, KAF ;
Nicolay, K .
STROKE, 1998, 29 (03) :695-704