The use of genetic algorithms and stochastic hill-climbing in dynamic finite element model identification

被引:21
作者
Dunn, SA [1 ]
机构
[1] Def Sci & Technol Org, Airframes & Engines Div, Aeronaut & Maritime Res Lab, Melbourne, Vic 3001, Australia
关键词
genetic algorithms; finite element modelling; identification;
D O I
10.1016/S0045-7949(97)00092-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper it will be demonstrated how genetic algorithms can be used with experimentally determined frequency response function data to identify finite element models of structures for dynamic analyses. The concepts will be demonstrated with a simple 2 d.f. simulation and a comparison will be made with stochastic hill-climbing as an analogue to calculus-based techniques. A genetic algorithm identification is then applied to experimental data for a simple beam. Published by Elsevier Science Ltd.
引用
收藏
页码:489 / 497
页数:9
相关论文
共 9 条
[1]  
Ackley D., 1987, GENETIC ALGORITHMS S, P170
[2]  
BEASLEY D, 1993, U COMPUT, V15, P58
[3]  
DAIS L, 1991, P 4 INT C GEN ALG, P18
[4]  
DUNN SA, 1994, 109116 NASA TM
[5]   GENETIC ALGORITHMS - PRINCIPLES OF NATURAL-SELECTION APPLIED TO COMPUTATION [J].
FORREST, S .
SCIENCE, 1993, 261 (5123) :872-878
[6]   GENETIC ALGORITHMS [J].
HOLLAND, JH .
SCIENTIFIC AMERICAN, 1992, 267 (01) :66-72
[7]  
JUELS A, 1994, 94834 UC BERK
[8]   STIFFNESS MATRIX ADJUSTMENT USING MODE DATA [J].
KABE, AM .
AIAA JOURNAL, 1985, 23 (09) :1431-1436
[9]  
WHITLEY D, 1994, STAT COMPUT, V4, P65, DOI 10.1007/BF00175354