PRR5 (PSEUDO-RESPONSE REGULATOR 5) plays antagonistic roles to CCA1 (CIRCADIAN CLOCK-ASSOCIATED-1) in Arabidopsis thaliana

被引:20
作者
Fujimori, T [1 ]
Sato, E [1 ]
Yamashino, T [1 ]
Mizuno, T [1 ]
机构
[1] Nagoya Univ, Sch Agr, Mol Microbiol Lab, Chikusa Ku, Nagoya, Aichi 4648601, Japan
关键词
Arabidopsis thaliana; circadian clock; flowering time; light response; pseudo-response regulator;
D O I
10.1271/bbb.69.426
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In general, the clock (or oscillator) is central to circadian rhythms in many organisms. In the model higher plant Arabidopsis thaliana, the best candidates forclock components are CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL), which are homologous Myb-related transcription factors. It is also believed that TOC1 (TIMING OF CAB EXPRESSION 1) is another component of the central oscillator. In this connection, we have been characterizing a small family of proteins, designated ARABIDOPSIS PSEUDO-RESPONSE REGULATOR (PRR1, PRR3, PRR5, PRR7, and PRR9), based on the fact that one of the members (PRR1) is identical to TOC1. Nevertheless, it is not yet certain whether other PRR family members are also implicated in clock function per se. To address this issue, in this study we examined a functional interaction between the CCA1 clock component and one of the PRR family members, PRR5, by employing transgenic lines overexpressing both the CCA1 and PRR5 genes. Evidence will be provided that PRR5 plays an antagonistic role(s) to the putative CCA1 clock component.
引用
收藏
页码:426 / 430
页数:5
相关论文
共 14 条
[1]   Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J].
Alabadí, D ;
Oyama, T ;
Yanovsky, MJ ;
Harmon, FG ;
Más, P ;
Kay, SA .
SCIENCE, 2001, 293 (5531) :880-883
[2]   The circadian clock. A plant's best friend in a spinning world [J].
Eriksson, ME ;
Millar, AJ .
PLANT PHYSIOLOGY, 2003, 132 (02) :732-738
[3]   Loss of the circadian clock-associated protein I in Arabidopsis results in altered clock-regulated gene expression [J].
Green, RM ;
Tobin, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :4176-4179
[4]   Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock [J].
Kaczorowski, KA ;
Quail, PH .
PLANT CELL, 2003, 15 (11) :2654-2665
[5]  
McClung CR, 2000, PHYSIOL PLANTARUM, V109, P359, DOI 10.1034/j.1399-3054.2000.100401.x
[6]   LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis [J].
Mizoguchi, T ;
Wheatley, K ;
Hanzawa, Y ;
Wright, L ;
Mizoguchi, M ;
Song, HR ;
Carré, IA ;
Coupland, G .
DEVELOPMENTAL CELL, 2002, 2 (05) :629-641
[7]   Plant response regulators implicated in signal transduction and circadian rhythm [J].
Mizuno, T .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (05) :499-505
[8]   Characterization of circadian-associated APRR3 pseudo-response regulator belonging to the APRR1/TOC1 quintet in Arabidopsis thaliana [J].
Murakami, M ;
Yamashino, T ;
Mizuno, T .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (05) :645-650
[9]   Phytochrome photosensory signalling networks [J].
Quail, PH .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (02) :85-93
[10]   Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis [J].
Sato, E ;
Nakamichi, N ;
Yamashino, T ;
Mizuno, T .
PLANT AND CELL PHYSIOLOGY, 2002, 43 (11) :1374-1385