Existence and stability of almost-periodic solutions of quasi-linear differential equations with deviating argument

被引:5
作者
Akhmet, MU [1 ]
机构
[1] Middle E Tech Univ, Dept Math, TR-06531 Ankara, Turkey
关键词
quasi-linear system; almost-periodic solutions; deviating argument; stability;
D O I
10.1016/j.aml.2003.08.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with the existence of an almost-periodic solution of the system with deviating argument dx(t)/dt = A(t)x(t) + f(t,x(t)),x(t - r(1)(t)),...,x(t - r(k) (t)), (1) such that the associated homogeneous linear system satisfies exponential dichotomy and deviations of the argument are not restricted by any sign assumption. The exponential stability of the solution when the system is with delay argument is considered. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1177 / 1181
页数:5
相关论文
共 13 条
[1]  
[Anonymous], 1974, LECT NOTES MATH
[2]  
Burton T. A., 2001, DYNAM SYST APPL, V10, P89
[3]   ON THE FUNCTIONAL EQUATION DY/DX=F(X,Y(X),Y(X+H)),H GREATER-THAN 0 [J].
DOSS, S ;
NASR, SK .
AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (05) :713-716
[4]  
Driver R.D., 2012, Ordinary and delay differential equations, V20
[5]  
ELSGOLTS LE, 1966, INTRO THEORY DIFFERN
[6]  
GOPALSAMY K, 1985, MATH JPN, V30, P849
[7]  
HALE J, 1971, FUNCTIONAL DIFFERTIA
[8]  
Hale J. K., 1977, Applied Mathematical Sciences, V3
[9]  
LIN QC, 1999, J ZHANGZHOU TEACH CO, V12, P21
[10]   Almost periodic solutions for undamped nonhomogeneous delay-differential equations [J].
Seifert, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (07) :2001-2005