Crystallization kinetics and self-induced pinning in cellular patterns

被引:28
作者
Aranson, IS
Malomed, BA
Pismen, LM
Tsimring, LS
机构
[1] Argonne Natl Lab, Argonne, IL 60439 USA
[2] Tel Aviv Univ, Fac Engn, Dept Interdisciplinary Studies, IL-69978 Tel Aviv, Israel
[3] Technion Israel Inst Technol, Dept Chem Engn, IL-32000 Haifa, Israel
[4] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 01期
关键词
D O I
10.1103/PhysRevE.62.R5
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Within the framework of the Swift-Hohenberg model it is shown numerically and analytically that the front propagation between cellular and uniform states is determined by periodic nucleation events triggered by the explosive growth of the localized zero-eigenvalue mode of the corresponding linear problem. We derive an evolution equation for this mode using asymptotic analysis, and evaluate the time interval between nucleation events, and hence the front speed. In the presence of noise, we find the velocity exponent of "thermally activated" front propagation (creep) beyond the pinning threshold. [SI063-651X(00)50407-3].
引用
收藏
页码:R5 / R8
页数:4
相关论文
共 12 条
[1]  
Blair D., UNPUB
[2]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[3]   BISTABLE SYSTEMS WITH PROPAGATING FRONTS LEADING TO PATTERN-FORMATION [J].
DEE, GT ;
VANSAARLOOS, W .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2641-2644
[4]   RESONANT PATTERNS THROUGH COUPLING WITH A ZERO MODE [J].
DEWEL, G ;
METENS, S ;
HILALI, M ;
BORCKMANS, P ;
PRICE, CB .
PHYSICAL REVIEW LETTERS, 1995, 74 (23) :4647-4650
[5]   STABILITY ANALYSIS OF TWO-DIMENSIONAL MODELS OF 3-DIMENSIONAL CONVECTION [J].
GREENSIDE, HS ;
CROSS, MC .
PHYSICAL REVIEW A, 1985, 31 (04) :2492-2501
[6]   TRANSVERSE EFFECTS IN COHERENTLY DRIVEN NONLINEAR CAVITIES [J].
MANDEL, P ;
GEORGIOU, M ;
ERNEUX, T .
PHYSICAL REVIEW A, 1993, 47 (05) :4277-4286
[7]   Tunable pinning of burst waves in extended systems with discrete sources [J].
Mitkov, I ;
Kladko, K ;
Pearson, JE .
PHYSICAL REVIEW LETTERS, 1998, 81 (24) :5453-5456
[8]   Phase ordering kinetics in the Swift-Hohenberg equation [J].
Ouchi, K ;
Fujisaka, H .
PHYSICAL REVIEW E, 1996, 54 (04) :3895-3898
[9]   Stable localized solutions of arbitrary length for the quintic Swift-Hohenberg equation [J].
Sakaguchi, H ;
Brand, HR .
PHYSICA D, 1996, 97 (1-3) :274-285
[10]   Dynamics of phase domains in the Swift-Hohenberg equation [J].
Staliunas, K ;
Sanchez-Morcillo, VJ .
PHYSICS LETTERS A, 1998, 241 (1-2) :28-34