Ultrafast evolution of photonic eigenstates in k-space

被引:50
作者
Engelen, Rob J. P.
Sugimoto, Yoshimasa
Gersen, Henkjan
Ikeda, Naoki
Asakawa, Kiyoshi
Kuipers, L.
机构
[1] FOM, Inst Atom & Mol Phys, Ctr Nanophoton, NL-1098 SJ Amsterdam, Netherlands
[2] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058561, Japan
[3] Univ Tsukuba, TARA Ctr, Tsukuba, Ibaraki 3058577, Japan
[4] Univ Twente, Dept Sci & Technol, Appl Opt Grp, NL-7500 AE Enschede, Netherlands
[5] Univ Bristol, Dept Phys, Nanophys & Soft Matter Grp, Bristol BS8 1TL, Avon, England
关键词
D O I
10.1038/nphys576
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Periodic structures have a large influence on propagating waves. This holds for various types of waves over a large range of length scales: from electrons in atomic crystals(1) and light in photonic crystals(2-4) to acoustic waves in sonic crystals(5). The eigenstates of these waves are best described with a band structure, which represents the relation between the energy and the wavevector (k). This relation is usually not straightforward: owing to the imposed periodicity, bands are folded into every Brillouin zone, inducing splitting of bands and the appearance of bandgaps. As a result, exciting phenomena such as negative refraction(6,7), auto-collimation of waves(8,9) and low group velocities(10-12) arise. k-space investigations of electronic eigenstates have already yielded new insights into the behaviour of electrons at surfaces and in novel materials(13-16). However, for a complete characterization of a structure, an understanding of the mutual coupling of eigenstates is also essential. Here, we investigate the propagation of light pulses through a photonic crystal structure using a near-field microscope(17,18). Tracking the evolution of the photonic eigenstates in both k-space and time allows us to identify individual eigenstates and to uncover their dynamics and coupling to other eigenstates on femtosecond timescales even when co-localized in real space and time.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 30 条
[1]   Tracking femtosecond laser pulses in space and time [J].
Balistreri, MLM ;
Gersen, H ;
Korterik, JP ;
Kuipers, L ;
van Hulst, NF .
SCIENCE, 2001, 294 (5544) :1080-1082
[2]   NEAR-FIELD OPTICS - MICROSCOPY, SPECTROSCOPY, AND SURFACE MODIFICATION BEYOND THE DIFFRACTION LIMIT [J].
BETZIG, E ;
TRAUTMAN, JK .
SCIENCE, 1992, 257 (5067) :189-195
[3]   About the Quantum mechanics of Electrons in Crystal lattices. [J].
Bloch, Felix .
ZEITSCHRIFT FUR PHYSIK, 1929, 52 (7-8) :555-600
[4]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[5]   Refractive acoustic devices for airborne sound -: art. no. 023902 [J].
Cervera, F ;
Sanchis, L ;
Sánchez-Pérez, JV ;
Martínez-Sala, R ;
Rubio, C ;
Meseguer, F ;
López, C ;
Caballero, D ;
Sánchez-Dehesa, J .
PHYSICAL REVIEW LETTERS, 2002, 88 (02) :4
[6]   IMAGING STANDING WAVES IN A 2-DIMENSIONAL ELECTRON-GAS [J].
CROMMIE, MF ;
LUTZ, CP ;
EIGLER, DM .
NATURE, 1993, 363 (6429) :524-527
[7]   Fermi surface, surface states, and surface reconstruction in Sr2RuO4 [J].
Damascelli, A ;
Lu, DH ;
Shen, KM ;
Armitage, NP ;
Ronning, F ;
Feng, DL ;
Kim, C ;
Shen, ZX ;
Kimura, T ;
Tokura, Y ;
Mao, ZQ ;
Maeno, Y .
PHYSICAL REVIEW LETTERS, 2000, 85 (24) :5194-5197
[8]   Simultaneous negative phase and group velocity of light in a metamaterial [J].
Dolling, G ;
Enkrich, C ;
Wegener, M ;
Soukoulis, CM ;
Linden, S .
SCIENCE, 2006, 312 (5775) :892-894
[9]   Local probing of Bloch mode dispersion in a photonic crystal waveguide [J].
Engelen, RJP ;
Karle, TJ ;
Gersen, H ;
Korterik, JP ;
Krauss, TF ;
Kuipers, L ;
van Hulst, NF .
OPTICS EXPRESS, 2005, 13 (12) :4457-4464
[10]   Acoustic backward-wave negative refractions in the second band of a sonic crystal [J].
Feng, L ;
Liu, XP ;
Lu, MH ;
Chen, YB ;
Chen, YF ;
Mao, YW ;
Zi, J ;
Zhu, YY ;
Zhu, SN ;
Ming, NB .
PHYSICAL REVIEW LETTERS, 2006, 96 (01)