Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation

被引:93
作者
Iyer, Aparna [1 ]
Galindo, Hugo [1 ]
Sithambaram, Shanthakumar [1 ]
King'ondu, Cecil [1 ]
Chen, Chun-Hu [1 ]
Suib, Steven L. [1 ,2 ]
机构
[1] Univ Connecticut, Dept Chem, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA
关键词
Photocatalysis; Oxidation; Manganese oxide octahedral molecular sieves; Oxygen evolution; SELECTIVE OXIDATION; TITANIUM-DIOXIDE; CATALYSTS; OXYGEN; ALCOHOLS; TIO2; LIGHT; DECOMPOSITION; ACETONE; AIR;
D O I
10.1016/j.apcata.2010.01.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Crystalline tunnel structure cryptomelane type manganese oxides (OMS-2) have been studied as photocatalysts for the selective oxidation of 2-propanol to acetone. The reaction is carried out with visible light irradiation at room temperature. The activities of various K-OMS-2 and metal doped OMS-2 (M-OMS-2) catalysts prepared by different synthesis procedures have been evaluated. K-OMS-2 and MOMS-2 (M = Fe, Ni) with nanorod morphology were the most active photocatalysts. Conversions obtained for these catalysts ranged from 50 to 15%. K-OMS-2 fibers gave only 5-6% conversion. All reactions gave 100% selectivity to acetone. The reusability of the K-OMS-2 catalyst was also tested. Characterization of K-OMS-2 catalysts was done using several techniques like temperature programmed desorption, UV-vis spectroscopy, average oxidation state analysis, XRD, BET and FE-SEM. As suggested by the photochemical and characterization data, synthesis methodology, morphology, mixed valency and the release of oxygen from the OMS-2 structure are important factors for the design of active OMS-2 photocatalysts. XRD and FTIR were also used to study structural changes in the catalyst after photolysis. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 41 条
[1]   Evolutionary biology - Out of thin air [J].
Allen, John F. ;
Martin, William .
NATURE, 2007, 445 (7128) :610-612
[2]   Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity [J].
Almquist, CB ;
Biswas, P .
JOURNAL OF CATALYSIS, 2002, 212 (02) :145-156
[3]   Utilization of TiO2 photocatalysts in green chemistry [J].
Anpo, M .
PURE AND APPLIED CHEMISTRY, 2000, 72 (07) :1265-1270
[4]   PHOTO-ADSORPTION AND PHOTO-CATALYSIS ON TITANIUM-DIOXIDE SURFACES - PHOTO-ADSORPTION OF OXYGEN AND PHOTOCATALYZED OXIDATION OF ISOPROPANOL [J].
BICKLEY, RI ;
JAYANTY, RKM .
FARADAY DISCUSSIONS, 1974, 58 :194-204
[5]   HIGHLY EFFICIENT HETEROGENEOUS PHOTOOXIDATION OF 2-PROPANOL TO ACETONE WITH AMORPHOUS MANGANESE OXIDE CATALYSTS [J].
CAO, H ;
SUIB, SL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (12) :5334-5342
[6]   Photoassisted catalytic oxidation of alcohols and halogenated hydrocarbons with amorphous manganese oxides [J].
Chen, J ;
Lin, JC ;
Purohit, V ;
Cutlip, MB ;
Suib, SL .
CATALYSIS TODAY, 1997, 33 (1-3) :205-214
[7]   Catalytic decomposition of 2-propanol over different metal-cation-doped OMS-2 materials [J].
Chen, X ;
Shen, YF ;
Suib, SL ;
O'Young, CL .
JOURNAL OF CATALYSIS, 2001, 197 (02) :292-302
[8]   Solar energy conversion [J].
Crabtree, George W. ;
Lewis, Nathan S. .
PHYSICS TODAY, 2007, 60 (03) :37-42
[9]   SYNTHESIS AND CHARACTERIZATION OF OCTAHEDRAL MOLECULAR-SIEVES (OMS-2) HAVING THE HOLLANDITE STRUCTURE [J].
DEGUZMAN, RN ;
SHEN, YF ;
NETH, EJ ;
SUIB, SL ;
OYOUNG, CL ;
LEVINE, S ;
NEWSAM, JM .
CHEMISTRY OF MATERIALS, 1994, 6 (06) :815-821
[10]   Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method [J].
Ding, YS ;
Shen, XF ;
Sithambaram, S ;
Gomez, S ;
Kumar, R ;
Crisostomo, VMB ;
Suib, SL ;
Aindow, M .
CHEMISTRY OF MATERIALS, 2005, 17 (21) :5382-5389