Extreme value analysis of diamond-size distributions

被引:6
作者
Caers, J
Vynckier, P
Beirlant, J
Rombouts, L
机构
[1] BELGIAN NATL FUND SCI RES,LOUVAIN,BELGIUM
[2] KATHOLIEKE UNIV LEUVEN,DEPT MATH,B-3001 HEVERLEE,BELGIUM
[3] TERRACONSULT BVBA,B-2640 ANTWERP,BELGIUM
来源
MATHEMATICAL GEOLOGY | 1996年 / 28卷 / 01期
关键词
extreme value theory; quantile-quantile plot; loghyperbolic; lognormal; diamond;
D O I
10.1007/BF02273522
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Extreme value analysis provides a semiparametric method for analyzing the extreme long rails of skew distributions which may be observed when handling mining darn. The estimation of important tail characteristics, such as the extreme value index, allows for a discrimination between competing distribution models. It measures the ''thickness'' of such long railed distributions, if only a limited sample is available. This paper stresses the practical implementation of extreme value theory, which is used to discriminate a lognormal from a mixed lognormal distribution in a case study of size distributions for alluvial diamonds.
引用
收藏
页码:25 / 43
页数:19
相关论文
共 32 条
[1]  
Aitchison J., 1969, The lognormal distribution With special reference to its uses in economics
[2]   TOWARD A GENERAL PROCEDURE FOR ANALYSIS OF EXTREME RANDOM EVENTS IN THE EARTH SCIENCES [J].
BARDSLEY, WE .
MATHEMATICAL GEOLOGY, 1988, 20 (05) :513-528
[3]  
BARNDORFFNIELSE.O, 1981, INT STAT REV, V2, P23
[4]  
BARNDORFFNIELSE.O, 1988, P ROY SOC LOND A MAT, V414, P335
[5]   EXPONENTIALLY DECREASING DISTRIBUTIONS FOR LOGARITHM OF PARTICLE-SIZE [J].
BARNDORFFNIELSEN, O .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 353 (1674) :401-419
[6]  
BEIRLANT J, 1995, UNPUB J AM STAT ASS
[7]  
BEIRLANT J, 1995, UNPUB BERNOULLI
[8]  
CAERS J, 1995, IN PRESS CAHIERS GEO
[9]   KERNEL ESTIMATES OF THE TAIL INDEX OF A DISTRIBUTION [J].
CSORGO, S ;
DEHEUVELS, P ;
MASON, D .
ANNALS OF STATISTICS, 1985, 13 (03) :1050-1077
[10]   ON TAIL ESTIMATION - AN IMPROVED METHOD [J].
DARGAHINOUBARY, GR .
MATHEMATICAL GEOLOGY, 1989, 21 (08) :829-842