An enhanced Radial Basis Function Network for voltage stability monitoring considering multiple contingencies

被引:9
作者
Chakrabarti, Saikat [1 ]
Jeyasurya, Benjamin [1 ]
机构
[1] Mem Univ Newfoundland, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
power system security; radial basis function network; regularization; voltage stability;
D O I
10.1016/j.epsr.2006.07.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a scheme for online voltage stability monitoring using an enhanced Radial Basis Function Network (RBFN). A single RBFN is used to predict MW margins for different contingencies. A sequential learning strategy is used along with a regularization technique to design the RBFN and the weights in the output layer are determined by using linear optimization. The proposed network can be adapted with changing operating scenario of the power system. A network pruning strategy is used to limit the growth of the network size due to adaptive training. The proposed scheme is applied on the New England 39-bus power system model. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:780 / 787
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 2002, NEURAL NETWORKS COMP
[2]  
[Anonymous], 1999, PROGR NEURAL PROCESS
[3]   ONLINE POWER-SYSTEM SECURITY ANALYSIS [J].
BALU, N ;
BERTRAM, T ;
BOSE, A ;
BRANDWAJN, V ;
CAULEY, G ;
CURTICE, D ;
FOUAD, A ;
FINK, L ;
LAUBY, MG ;
WOLLENBERG, BF ;
WRUBEL, JN .
PROCEEDINGS OF THE IEEE, 1992, 80 (02) :262-280
[4]  
CHAKRABARTI S, 2005, 13 INT C INT SYST AP
[5]  
Chen L., 2000, IEEE POW ENG SOC SUM
[6]  
DILLON TS, 1996, NEURAL NETWORKS APPL
[7]  
DINAVAHI VR, 2001, IEEE POW ENG SOC SUM
[8]   APPLICATION OF ARTIFICIAL NEURAL NETWORKS IN VOLTAGE STABILITY ASSESSMENT [J].
ELKEIB, AA ;
MA, X .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (04) :1890-1896
[9]  
Engl H., 1996, REGULARIZATION INVER
[10]  
HIRSCH P, 2005, IEEE POW ENG SOC GEN