Consensus algorithms for the generation of all maximal bicliques

被引:107
作者
Alexe, G
Alexe, S
Crama, Y
Foldes, S
Hammer, PL
Simeone, B
机构
[1] Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA
[2] Univ Liege, Ecole Adm Affaires, B-4000 Liege, Belgium
[3] Tampere Univ Technol, Dept Math, FIN-33101 Tampere, Finland
[4] Univ Roma La Sapienza, Dept Stat, I-00185 Rome, Italy
关键词
maximal complete bipartite subgraph; biclique; consensus-type algorithm; algorithmic graph theory; incremental polynomial enumeration;
D O I
10.1016/j.dam.2003.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a new algorithm for generating all maximal bicliques (i.e. complete bipartite. not necessarily induced subgraphs) of a graph. The algorithm is inspired by, and is quite similar to. the consensus method used in propositional logic. We show that some variants of the algorithm are totally polynomial, and even incrementally polynomial. The total complexity of the most efficient variant of the algorithms presented here is polynomial in the input size. and only linear in the output size. Computational experiments demonstrate its high efficiency on randomly generated graphs with up to 2000 vertices and 20,000 edges. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 21
页数:11
相关论文
共 42 条
[1]  
AGARWAL PK, 1993, P 9 ANN ACM S COMP G, P338
[2]  
Aho A.V., 1974, The Design and Analysis of Computer Algorithms
[3]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[4]  
Benzaken C., 1983, C NUMER, V39, P123
[5]  
BENZAKEN CI, 1983, INT SER NUMER MATH, V39, P123
[6]  
BERMOND JC, 1978, 10 U PAR SUD CTR ORS
[7]  
Blake A., 1937, Ph.D. dissertation
[8]  
Boros E., 1990, Annals of Mathematics and Artificial Intelligence, V1, P21
[9]   Bipartite subgraphs of graphs with maximum degree three [J].
Bylka, SA ;
Idzik, A ;
Komar, J .
GRAPHS AND COMBINATORICS, 1999, 15 (02) :129-136
[10]  
Chang C. L., 1973, Symbolic Logic and Mechanical Theorem Proving, DOI DOI 10.1137/1016071