Multidrug resistance protein -: Identification of regions required for active transport of leukotriene C4

被引:89
作者
Gao, M
Yamazaki, M
Loe, DW
Westlake, CJ
Grant, CE
Cole, SPC
Deeley, RG
机构
[1] Queens Univ, Canc Res Labs, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Pathol, Kingston, ON K7L 3N6, Canada
[3] Queens Univ, Dept Biochem, Kingston, ON K7L 3N6, Canada
关键词
D O I
10.1074/jbc.273.17.10733
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multidrug resistance protein (MRP) is a broad specificity, primary active transporter of organic anion conjugates that confers a multidrug resistance phenotype when transfected into drug-sensitive cells. The protein was the first example of a subgroup of the ATP-binding cassette superfamily whose members have three membrane-spanning domains (MSDs) and two nucleotide binding domains. The role(s) of the third MSD of MRP and its related transporters is not known. To begin to address this question, we examined the ability of various MRP fragments, expressed individually and in combination, to transport the MRP substrate, leukotriene C-4, (LTC4). We found that elimination of the entire NH2-terminal MSD or just the first putative transmembrane helix, or substitution of the MSD with the comparable region of the functionally and structurally related transporter, the canalicular multispecific organic anion transporter (cMOAT/MRP2), had little effect on protein accumulation in the membrane. However, all three modifications decreased LTC4 transport activity by at least 90%. Transport activity could be reconstituted by co-expression of the NH2-terminal MSD with a fragment corresponding to the remainder of the MRP molecule, but this required both the region encoding the transmembrane helices of the NH2-terminal MSD and the cytoplasmic region linking it to the next MSD. In contrast, a major part of the cytoplasmic region linking the NH2-proximal nucleotide binding domain of the protein to the COOH-proximal MSD was not required for active transport of LTC4.
引用
收藏
页码:10733 / 10740
页数:8
相关论文
共 48 条
[1]   CLONING OF THE BETA-CELL HIGH-AFFINITY SULFONYLUREA RECEPTOR - A REGULATOR OF INSULIN-SECRETION [J].
AGUILARBRYAN, L ;
NICHOLS, CG ;
WECHSLER, SW ;
CLEMENT, JP ;
BOYD, AE ;
GONZALEZ, G ;
HERRERASOSA, H ;
NGUY, K ;
BRYAN, J ;
NELSON, DA .
SCIENCE, 1995, 268 (5209) :423-426
[2]  
ALMQUIST KC, 1995, CANCER RES, V55, P102
[3]   CHARACTERISTICS OF PEPTIDE AND MAJOR HISTOCOMPATIBILITY COMPLEX CLASS-I BETA(2)-MICROGLOBULIN BINDING TO THE TRANSPORTERS ASSOCIATED WITH ANTIGEN-PROCESSING (TAP1 AND TAP2) [J].
ANDROLEWICZ, MJ ;
ORTMANN, B ;
VANENDERT, PM ;
SPIES, T ;
CRESSWELL, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12716-12720
[4]   Membrane topology and glycosylation of the human multidrug resistance-associated protein [J].
Bakos, E ;
Hegedus, T ;
Hollo, Z ;
Welker, E ;
Tusnady, GE ;
Zaman, GJR ;
Flens, MJ ;
Varadi, A ;
Sarkadi, B .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (21) :12322-12326
[5]   MUTATIONAL ANALYSIS OF THE YEAST A-FACTOR TRANSPORTER STE6, A MEMBER OF THE ATP BINDING CASSETTE (ABC) PROTEIN SUPERFAMILY [J].
BERKOWER, C ;
MICHAELIS, S .
EMBO JOURNAL, 1991, 10 (12) :3777-3785
[6]   RECONSTITUTION OF A BACTERIAL PERIPLASMIC PERMEASE IN PROTEOLIPOSOMES AND DEMONSTRATION OF ATP HYDROLYSIS CONCOMITANT WITH TRANSPORT [J].
BISHOP, L ;
AGBAYANI, R ;
AMBUDKAR, SV ;
MALONEY, PC ;
AMES, GFL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (18) :6953-6957
[7]   PHOSPHORYLATION BY PROTEIN-KINASE-C AND CYCLIC-AMP-DEPENDENT PROTEIN-KINASE OF SYNTHETIC PEPTIDES DERIVED FROM THE LINKER REGION OF HUMAN P-GLYCOPROTEIN [J].
CHAMBERS, TC ;
POHL, J ;
GLASS, DB ;
KUO, JF .
BIOCHEMICAL JOURNAL, 1994, 299 :309-315
[8]  
CHANG XB, 1993, J BIOL CHEM, V268, P11304
[9]   PHOSPHORYLATION OF THE R-DOMAIN BY CAMP-DEPENDENT PROTEIN-KINASE REGULATES THE CFTR CHLORIDE CHANNEL [J].
CHENG, SH ;
RICH, DP ;
MARSHALL, J ;
GREGORY, RJ ;
WELSH, MJ ;
SMITH, AE .
CELL, 1991, 66 (05) :1027-1036
[10]   STRUCTURE AND EXPRESSION OF THE HUMAN MDR (P-GLYCOPROTEIN) GENE FAMILY [J].
CHIN, JE ;
SOFFIR, R ;
NOONAN, KE ;
CHOI, K ;
RONINSON, IB .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (09) :3808-3820