The cut-homeodomain transcriptional activator HNF-6 is coexpressed with its target gene HNF-3β in the developing murine liver and pancreas

被引:155
作者
Rausa, F
Samadani, U
Ye, HG
Lim, L
Fletcher, CF
Jenkins, NA
Copeland, NG
Costa, RH
机构
[1] Univ Illinois, Coll Med, Dept Biochem & Mol Biol MC 536, Chicago, IL 60612 USA
[2] NCI, Frederick Canc Res & Dev Ctr, ABL Basic Res Program, Mammalian Genet Lab, Frederick, MD 21702 USA
关键词
D O I
10.1006/dbio.1997.8744
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Murine hepatocyte nuclear factor-3 beta (HNF-3 beta) protein is a member of a large family of developmentally regulated transcription factors that share homology in the winged helix/fork head DNA binding domain and that participate in embryonic pattern formation. HNF-3 beta also mediates cell-specific transcription of genes important for the function of hepatocytes, intestinal and bronchiolar epithelial, and pancreatic acinar cells. We have previously identified a liver-enriched transcription factor, HNF-6, which is required for HNF-3 beta promoter activity and also recognizes the regulatory region of numerous hepatocyte-specific genes. In this study we used the yeast one-hybrid system to isolate the HNF-6 cDNA, which encodes a cut-homeodomain-containing transcription factor that binds with the same specificity as the liver HNF-6 protein. Cotransfection assays demonstrate that HNF-6 activates expression of a reporter gene driven by the HNF-6 binding site from either the HNF-3 beta or transthyretin (TTR) promoter regions. We used interspecific backcross analysis to determine that murine Hnf6 gene is located in the middle of mouse chromosome 9. In situ hybridization studies of staged specific embryos demonstrate that HNF-6 and its potential target gene, HNF-3 beta, are coexpressed in the pancreatic and hepatic diverticulum. More detailed analysis of HNF-6 and HNF-3 beta's developmental expression patterns provides evidence of colocalization in hepatocytes, intestinal epithelial, and in the pancreatic ductal epithelial and exocrine acinar cells. The expression patterns of these two transcription factors do not overlap in other endoderm-derived tissues or the neurotube. We also found that HNF-6 is also abundantly expressed in the dorsal root ganglia, the marginal layer, and the midbrain. At day 18 of gestation and in the adult pancreas, HNF-6 and HNF-3 beta transcripts colocalize in the exocrine acinar cells, but their expression patterns diverge in other pancreatic epithelium. HNF-6, but not HNF-3 beta, expression continues in the pancreatic ductal epithelium, whereas only HNF-3 beta becomes restricted to the endocrine cells of the islets of Langerhans. We discuss these expression patterns with respect to specification of hepatocytes and differentiation of the endocrine and exocrine pancreas. (C) 1997 Academic Press.
引用
收藏
页码:228 / 246
页数:19
相关论文
共 63 条
[1]  
Ahlgren U, 1996, DEVELOPMENT, V122, P1409
[2]  
ANG SL, 1993, DEVELOPMENT, V119, P1301
[3]   HNF-3-BETA IS ESSENTIAL FOR NODE AND NOTOCHORD FORMATION IN MOUSE DEVELOPMENT [J].
ANG, SL ;
ROSSANT, J .
CELL, 1994, 78 (04) :561-574
[4]   THE LUNG-SPECIFIC SURFACTANT PROTEIN-B GENE PROMOTER IS A TARGET FOR THYROID TRANSCRIPTION FACTOR-1 AND HEPATOCYTE NUCLEAR FACTOR-3, INDICATING COMMON FACTORS FOR ORGAN-SPECIFIC GENE-EXPRESSION ALONG THE FOREGUT AXIS [J].
BOHINSKI, RJ ;
DILAURO, R ;
WHITSETT, JA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (09) :5671-5681
[5]   In vivo footprinting with limiting amounts of embryo tissues: A role for C/EBP beta in early hepatic development [J].
Bossard, P ;
McPherson, CE ;
Zaret, KS .
METHODS-A COMPANION TO METHODS IN ENZYMOLOGY, 1997, 11 (02) :180-188
[6]   Liver-enriched transcription factors and hepatocyte differentiation [J].
Cereghini, S .
FASEB JOURNAL, 1996, 10 (02) :267-282
[7]   CO-CRYSTAL STRUCTURE OF THE HNF-3/FORK HEAD DNA-RECOGNITION MOTIF RESEMBLES HISTONE-H5 [J].
CLARK, KL ;
HALAY, ED ;
LAI, ES ;
BURLEY, SK .
NATURE, 1993, 364 (6436) :412-420
[8]  
COCKELL M, 1995, MOL CELL BIOL, V15, P1933
[9]   DEVELOPMENT AND APPLICATIONS OF A MOLECULAR GENETIC-LINKAGE MAP OF THE MOUSE GENOME [J].
COPELAND, NG ;
JENKINS, NA .
TRENDS IN GENETICS, 1991, 7 (04) :113-118
[10]   MULTIPLE HEPATOCYTE-ENRICHED NUCLEAR FACTORS FUNCTION IN THE REGULATION OF TRANSTHYRETIN AND ALPHA-1-ANTITRYPSIN GENES [J].
COSTA, RH ;
GRAYSON, DR ;
DARNELL, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (04) :1415-1425