Energy function for learning invariance in multilayer perceptron

被引:11
作者
Peng, HC [1 ]
Sha, LF [1 ]
Gan, Q [1 ]
Wei, Y [1 ]
机构
[1] SE Univ, Dept Biomed Engn, Nanjing 210096, Peoples R China
关键词
D O I
10.1049/el:19980161
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new energy function is proposed for forming self-adapting ordered representations of input samples in a multilayer perceptron. Simulation results on unconstrained handwritten digit recognition give a better invariance extraction for this model than for several other models.
引用
收藏
页码:292 / 294
页数:3
相关论文
共 5 条
[1]   Learning Invariance from Transformation Sequences [J].
Foldiak, Peter .
NEURAL COMPUTATION, 1991, 3 (02) :194-200
[2]   Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J].
Olshausen, BA ;
Field, DJ .
NATURE, 1996, 381 (6583) :607-609
[3]   A LEARNING RULE FOR EXTRACTING SPATIOTEMPORAL INVARIANCES [J].
STONE, J ;
BRAY, A .
NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1995, 6 (03) :429-436
[4]   Using spatio-temporal correlations to learn invariant object recognition [J].
Wallis, G .
NEURAL NETWORKS, 1996, 9 (09) :1513-1519
[5]   Optimal, unsupervised learning in invariant object recognition [J].
Wallis, G ;
Baddeley, R .
NEURAL COMPUTATION, 1997, 9 (04) :883-894