Invasive potential induced under long-term oxidative stress in mammary epithelial cells

被引:163
作者
Mori, K [1 ]
Shibanuma, M [1 ]
Nose, K [1 ]
机构
[1] Showa Univ, Sch Pharmaceut Sci, Dept Microbiol, Shinagawa Ku, Tokyo 1428555, Japan
关键词
D O I
10.1158/0008-5472.CAN-04-1725
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Although the causal relationship between chronic inflammation and carcinogenesis has long been discussed, the molecular basis of the relation is poorly understood. In the present study, we focused on reactive oxygen species (ROS) and their signals under inflammatory conditions leading to the carcinogenesis of epithelial cells and found that repeated treatment with a low dose of H2O2 (0.2 mmol/L) for periods of 2 to 4 days caused a phenotypic conversion of mouse NMuMG mammary epithelial cells from epithelial to fibroblast-like as in malignant transformation. The phenotypic conversion included the dissolution of cell-cell contacts, redistribution of E-cadherin in the cytoplasm, and up-regulation of a set of integrin family members (integrin alpha2, alpha6, and beta3) and matrix metalloproteinases (MMPs; MMP-3, -10, and -13), as analyzed using Northern blot analysis and quantitative reverse transcription-PCR. Gelatin zymography indicated post-transcriptional activation of gelatinases, including MMP-2 and -9. In parallel, p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 were activated, which contributed to the induction of MMP-13, and a glutathione S-transferase pull-down assay showed the activation of a small GTPase, Rac1. Surprisingly, the prolonged oxidative treatment was sufficient to induce all of the aforementioned events. Most importantly, depending on the MMP activities, the epithelial cells exposed to oxidative conditions eventually acquired invasiveness in a reconstituted model system with a Matrigel invasion chamber containing normal fibroblasts at the bottom, providing the first substantial evidence supporting the direct role of ROS signals in the malignant transformation of epithelial cells.
引用
收藏
页码:7464 / 7472
页数:9
相关论文
共 56 条
[1]   c-Src is required for oxidative stress-mediated activation of big mitogen-activated protein kinase 1 (BMK1) [J].
Abe, J ;
Takahashi, M ;
Ishida, M ;
Lee, JD ;
Berk, BC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (33) :20389-20394
[2]   Fyn and JAK2 mediate Ras activation by reactive oxygen species [J].
Abe, J ;
Berk, BC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (30) :21003-21010
[3]   Motility and invasion are differentially modulated by Rho family GTPases [J].
Banyard, J ;
Anand-Apte, B ;
Symons, M ;
Zetter, BR .
ONCOGENE, 2000, 19 (04) :580-591
[4]   Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress [J].
Benhar, M ;
Dalyot, I ;
Engelberg, D ;
Levitzki, A .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (20) :6913-6926
[5]   Ultraviolet-B irradiation and matrix metalloproteinases - From induction via signaling to initial events [J].
Brenneisen, P ;
Sies, H ;
Scharffetter-Kochanek, K .
CELL SIGNALING, TRANSCRIPTION, AND TRANSLATION AS THERAPEUTIC TARGETS, 2002, 973 :31-43
[6]   A CONSERVED BINDING MOTIF DEFINES NUMEROUS CANDIDATE TARGET PROTEINS FOR BOTH CDC42 AND RAC GTPASES [J].
BURBELO, PD ;
DRECHSEL, D ;
HALL, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (49) :29071-29074
[7]   Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion [J].
Chiarugi, P ;
Pani, G ;
Giannoni, E ;
Taddei, L ;
Colavitti, R ;
Raugei, G ;
Symons, M ;
Borrello, S ;
Galeotti, T ;
Ramponi, G .
JOURNAL OF CELL BIOLOGY, 2003, 161 (05) :933-944
[8]   Two vicinal cysteines confer a peculiar redox regulation to low molecular weight protein tyrosine phosphatase in response to platelet-derived growth factor receptor stimulation [J].
Chiarugi, P ;
Fiaschi, T ;
Taddei, ML ;
Talini, D ;
Giannoni, E ;
Raugei, G ;
Ramponi, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :33478-33487
[9]   THE SMALL GTP-BINDING PROTEINS RAC1 AND CDC42 REGULATE THE ACTIVITY OF THE JNK/SAPK SIGNALING PATHWAY [J].
COSO, OA ;
CHIARIELLO, M ;
YU, JC ;
TERAMOTO, H ;
CRESPO, P ;
XU, NG ;
MIKI, T ;
GUTKIND, JS .
CELL, 1995, 81 (07) :1137-1146
[10]   Inflammation and cancer [J].
Coussens, LM ;
Werb, Z .
NATURE, 2002, 420 (6917) :860-867