Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate

被引:118
作者
Navazio, L
Bewell, MA
Siddiqua, A
Dickinson, GD
Galione, A
Sanders, D
机构
[1] Univ York, Dept Biol, Plant Lab, York YO10 5YW, N Yorkshire, England
[2] Univ Oxford, Dept Pharmacol, Oxford OX1 3QT, England
关键词
D O I
10.1073/pnas.140217897
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Higher plants share with animals a responsiveness to the Ca2+ mobilizing agents inositol 1,4,5-trisphosphate (InsP(3)) and cyclic ADP-ribose (cADPR). In this study. by using a vesicular Ca-45(2+) flux assay, we demonstrate that microsomal vesicles from red beet and cauliflower also respond to nicotinic acid adenine dinucleotide phosphate (NAADP), a Ca2+-releasing molecule recently described in marine invertebrates. NAADP potently mobilizes Ca2+ with a K-1/2 = 96 nM from microsomes of nonvacuolar origin in red beet. Analysis of sucrose gradient-separated cauliflower microsomes revealed that the NAADP-sensitive Ca2+ pool was derived from the endoplasmic reticulum. This exclusively nonvacuolar location of the NAADP-sensitive Ca2+ pathway distinguishes it from the InsP(3)-and cADPR-gated pathways. Desensitization experiments revealed that homogenates derived from cauliflower tissue contained low levels of NAADP (125 pmol/mg) and were competent in NAADP synthesis when provided with the substrates NADP and nicotinic acid. NAADP-induced Ca2+ release is insensitive to heparin and 8-NH2-cADPR, specific inhibitors of the InsP(3)- and cADPR-controlled mechanisms, respectively. However. NAADP-induced Ca2+ release could be blocked by pretreatment with a subthreshold dose of NAADP, as previously observed in sea urchin eggs. Furthermore, the NAADP-gated Ca2+ release pathway is independent of cyto solic free Ca2+ and therefore incapable of operating Ca2+-induced Ca2+ release. In contrast to the sea urchin system, the NAADP-gated Ca2+ release pathway in plants is not blocked by L-type channel antagonists. The existence of multiple Ca2+ mobilization pathways and Ca2+ release sites might contribute to the generation of stimulus-specific Ca2+ signals in plant cells.
引用
收藏
页码:8693 / 8698
页数:6
相关论文
共 55 条
[1]   Activation and inactivation of Ca2+ release by NAADP(+) [J].
Aarhus, R ;
Dickey, DM ;
Graeff, RM ;
Gee, KR ;
Walseth, TF ;
Lee, HC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (15) :8513-8516
[2]   ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP(+) [J].
Aarhus, R ;
Graeff, RM ;
Dickey, DM ;
Walseth, TF ;
Lee, HC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (51) :30327-30333
[3]   Calcium signaling by cyclic ADP-ribose, NAADP, and inositol trisphosphate are involved in distinct functions in ascidian oocytes [J].
Albrieux, M ;
Lee, HC ;
Villaz, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) :14566-14574
[4]   OSMOTIC-STRESS ENHANCES THE COMPETENCE OF BETA-VULGARIS VACUOLES TO RESPOND TO INOSITOL 1,4,5-TRISPHOSPHATE [J].
ALLEN, GJ ;
SANDERS, D .
PLANT JOURNAL, 1994, 6 (05) :687-695
[5]   RELEASE OF CA2+ FROM INDIVIDUAL PLANT VACUOLES BY BOTH INSP(3) AND CYCLIC ADP-RIBOSE [J].
ALLEN, GJ ;
MUIR, SR ;
SANDERS, D .
SCIENCE, 1995, 268 (5211) :735-737
[6]  
[Anonymous], ISOLATION MEMBRANES
[7]   Calmodulin-stimulated Ca2+-ATPases in the vacuolar and plasma membranes in cauliflower [J].
Askerlund, P .
PLANT PHYSIOLOGY, 1997, 114 (03) :999-1007
[8]   RECONSTITUTION AND CHARACTERIZATION OF A CALMODULIN-STIMULATED CA-2+-PUMPING ATPASE PURIFIED FROM BRASSICA-OLERACEA L [J].
ASKERLUND, P ;
EVANS, DE .
PLANT PHYSIOLOGY, 1992, 100 (04) :1670-1681
[9]   Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from brain microsomes [J].
Bak, J ;
White, P ;
Timár, G ;
Missiaen, L ;
Genazzani, AA ;
Galione, A .
CURRENT BIOLOGY, 1999, 9 (14) :751-754
[10]   INOSITOL TRISPHOSPHATE AND CALCIUM SIGNALING [J].
BERRIDGE, MJ .
NATURE, 1993, 361 (6410) :315-325