Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes

被引:512
作者
Wang, Wei [1 ]
Kumta, Prashant N. [1 ,2 ,3 ]
机构
[1] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[2] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15261 USA
[3] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA
关键词
silicon; carbon nanotube; anode; lithium battery; CORE-SHELL NANOWIRES; NEGATIVE ELECTRODES; COMPOSITE ANODES; LI; PERFORMANCE; CO3O4; BATTERIES; ROPES; EELS;
D O I
10.1021/nn901632g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium-ion batteries have witnessed meteoric advancement the last two decades. The anode area has seen unprecedented research activity on Si and Sn, the two anode alternatives to currently used carbon following the initial seminal work by Fuji on tin oxide nanocomposites. Recent reports on silicon nanowires, porous Si, and amorphous Si coatings on graphite nanofibers (GNF) have been very encouraging. High capacity and long cycle life anodes are still, however, elusive and much needed to meet the ever increasing energy storage demands of modern society. Herein, we report for the first time the synthesis of novel 1D heterostructures comprising vertically aligned multiwall CNTs (VACNTs) containing nanoscale amorphous/nanocrystalline Si droplets deposited directly on VACNTs with clearly defined spacing using a simple two-step liquid injection CVD process. A hallmark of these single reactor derived heterostructures is an interfacial amorphous carbon layer anchoring the nanoscale Si clusters directly to the VACNTs. The defined spacing of nanoscale Si combined with their tethered CNT architecture allow for the silicon to undergo reversible electrochemical alloying and dealloying with Li with minimal loss of contact with the underlying CNTs. The novel heterostructures thus exhibit impressive reversible stable capacities similar to 2050 mAh/g with very good rate capability and an acceptable first cycle irreversible loss similar to 20% comparable to graphitic anodes indicating their promise as high capacity Li-ion anodes. Although warranting further research, particularly with regard to long-term cycling, it can be envisaged that optimization of this simple approach could lead to reversible high capacity next generation Li-ion anodes.
引用
收藏
页码:2233 / 2241
页数:9
相关论文
共 49 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte [J].
Armstrong, Graham ;
Armstrong, A. Robert ;
Bruce, Peter G. ;
Reale, Priscilla ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2006, 18 (19) :2597-+
[3]   CURRENT TRENDS FOR EELS STUDIES IN PHYSICS [J].
BATSON, PE .
MICROSCOPY MICROANALYSIS MICROSTRUCTURES, 1991, 2 (2-3) :395-402
[4]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[5]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[6]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[7]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[8]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[9]   Crystalline-Amorphous Core-Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes [J].
Cui, Li-Feng ;
Ruffo, Riccardo ;
Chan, Candace K. ;
Peng, Hailin ;
Cui, Yi .
NANO LETTERS, 2009, 9 (01) :491-495
[10]   Silicon and carbon based composite anodes for lithium ion batteries [J].
Datta, Moni Kanchan ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2006, 158 (01) :557-563