Melanopsin retinal ganglion cells receive bipolar and amacrine cell synapses

被引:219
作者
Belenky, MA
Smeraski, CA
Provencio, I
Sollars, PJ
Pickard, GE [1 ]
机构
[1] Colorado State Univ, Dept Biomed Sci, Sect Anat & Neurobiol, Ft Collins, CO 80523 USA
[2] Hebrew Univ Jerusalem, Dept Cell & Anim Biol, IL-91904 Jerusalem, Israel
[3] Uniformed Serv Univ Hlth Sci, Dept Anat Physiol & Genet, Bethesda, MD 20814 USA
关键词
suprachiasmatic nucleus; circadian rhythm; retinohypothalamic tract; pretectum; intergeniculate leaflet;
D O I
10.1002/cne.10652
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Melanopsin is a novel opsin synthesized in a small subset of retinal ganglion cells. Ganglion cells expressing melanopsin are capable of depolarizing in response to light in the absence of rod or cone input and are thus intrinsically light sensitive. Melanopsin ganglion cells convey information regarding general levels of environmental illumination to the suprachiasmatic nucleus, the intergeniculate leaflet, and the pretecturn. Typically, retinal ganglion cells communicate information to central visual structures by receiving input from retinal photoreceptors via bipolar and amacrine cells. Because melanopsin ganglion cells do not require synaptic input to generate light-induced signals, these cells need not receive synapses from other neurons in the retina. In this study, we examined the ultrastructure of melanopsin ganglion cells in the mouse retina to determine the type (if any) of synaptic input these cells receive. Melanopsin immunoreaction product was associated primarily with the plasma membrane of (1) perikarya in the ganglion cell layer, (2) dendritic processes in the inner plexiform layer (IPL), and (3) axons in the optic fiber layer. Melanopsin-immunoreactive dendrites in the inner (ON) region of the IPL were postsynaptic to bipolar and amacrine terminals, whereas melanopsin dendrites stratifying in the outer (OFF) region of the IPL received only amacrine terminals. These observations suggested that rod and/or cone signals may be capable of modifying the intrinsic light response in melanopsin-expressing retinal ganglion cells. (C) 2003 Wiley-Liss, Inc.
引用
收藏
页码:380 / 393
页数:14
相关论文
共 56 条
[1]   ORIGINS OF UNCROSSED RETINOFUGAL PROJECTIONS IN NORMAL AND HYPOPIGMENTED MICE [J].
BALKEMA, GW ;
DRAGER, UC .
VISUAL NEUROSCIENCE, 1990, 4 (06) :595-604
[2]   Subcellular distribution of 5-HT1B and 5-HT7 receptors in the mouse suprachiasmatic nucleus [J].
Belenky, MA ;
Pickard, GE .
JOURNAL OF COMPARATIVE NEUROLOGY, 2001, 432 (03) :371-388
[3]   Phototransduction by retinal ganglion cells that set the circadian clock [J].
Berson, DM ;
Dunn, FA ;
Takao, M .
SCIENCE, 2002, 295 (5557) :1070-1073
[4]   GLUTAMATE-LIKE IMMUNOREACTIVITY IN RETINAL TERMINALS OF THE MOUSE SUPRACHIASMATIC NUCLEUS [J].
CASTEL, M ;
BELENKY, M ;
COHEN, S ;
OTTERSEN, OP ;
STORMMATHISEN, J .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1993, 5 (04) :368-381
[5]   Pituitary adenylyl cyclase-activating peptide: A pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock [J].
Chen, D ;
Buchanan, GF ;
Ding, JM ;
Hannibal, J ;
Gillette, MU .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13468-13473
[6]   A photic visual cycle of rhodopsin regeneration is dependent on Rgr [J].
Chen, P ;
Hao, WS ;
Rife, L ;
Wang, XP ;
Shen, DW ;
Chen, J ;
Ogden, T ;
Van Boemel, GB ;
Wu, LY ;
Yang, M ;
Fong, HKW .
NATURE GENETICS, 2001, 28 (03) :256-260
[7]   ELECTRON-MICROSCOPIC ANALYSIS OF THE ROD PATHWAY OF THE RAT RETINA [J].
CHUN, MH ;
HAN, SH ;
CHUNG, JW ;
WASSLE, H .
JOURNAL OF COMPARATIVE NEUROLOGY, 1993, 332 (04) :421-432
[8]   ORGANIZATION OF PRIMATE RETINA - ELECTRON MICROSCOPY [J].
DOWLING, JE ;
BOYCOTT, BB .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1966, 166 (1002) :80-+
[10]  
Dunn FA, 2002, INVEST OPHTH VIS SCI, V43, pU839