Efficient computation of dendritic microstructures using adaptive mesh refinement

被引:273
作者
Provatas, N
Goldenfeld, N
Dantzig, J
机构
[1] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
关键词
D O I
10.1103/PhysRevLett.80.3308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study dendritic microstructure evolution using an adaptive grid, finite element method applied to a phase-field model. The computational complexity of our algorithm, per unit time, scales linearly with system size, allowing simulations on very large lattices. a 2(17) x 2(17) lattice, but note that this is not an upper limit. Time-dependent calculations in two dimensions are in good agreement with the predictions of solvability theory for high undercoolings, but predict higher values of velocity than solvability theory at low undercooling, where transients dominate, in accord with a heuristic criterion which we derive.
引用
收藏
页码:3308 / 3311
页数:4
相关论文
共 28 条
[1]   SCALING BEHAVIOR IN ANISOTROPIC HELE-SHAW FLOW [J].
ALMGREN, R ;
DAI, WS ;
HAKIM, V .
PHYSICAL REVIEW LETTERS, 1993, 71 (21) :3461-3464
[2]   VARIATIONAL ALGORITHMS AND PATTERN-FORMATION IN DENDRITIC SOLIDIFICATION [J].
ALMGREN, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (02) :337-354
[3]   DYNAMICS OF INTERFACIAL PATTERN-FORMATION [J].
BENJACOB, E ;
GOLDENFELD, N ;
LANGER, JS ;
SCHON, G .
PHYSICAL REVIEW LETTERS, 1983, 51 (21) :1930-1932
[4]   PATTERN SELECTION IN DENDRITIC SOLIDIFICATION [J].
BENJACOB, E ;
GOLDENFELD, N ;
KOTLIAR, BG ;
LANGER, JS .
PHYSICAL REVIEW LETTERS, 1984, 53 (22) :2110-2113
[5]   Adaptive phase-field computations of dendritic crystal growth [J].
Braun, RJ ;
Murray, BT .
JOURNAL OF CRYSTAL GROWTH, 1997, 174 (1-4) :41-53
[6]   PATTERN SELECTION IN 2-DIMENSIONAL DENDRITIC GROWTH [J].
BRENER, EA ;
MELNIKOV, VI .
ADVANCES IN PHYSICS, 1991, 40 (01) :53-97
[7]   GEOMETRICAL APPROACH TO MOVING-INTERFACE DYNAMICS [J].
BROWER, RC ;
KESSLER, DA ;
KOPLIK, J ;
LEVINE, H .
PHYSICAL REVIEW LETTERS, 1983, 51 (13) :1111-1114
[8]   PHASE FIELD COMPUTATIONS OF SINGLE-NEEDLE CRYSTALS, CRYSTAL-GROWTH, AND MOTION BY MEAN-CURVATURE [J].
CAGINALP, G ;
SOCOLOVSKY, E .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01) :106-126
[9]   THE ROLE OF MICROSCOPIC ANISOTROPY IN THE MACROSCOPIC BEHAVIOR OF A PHASE-BOUNDARY [J].
CAGINALP, G .
ANNALS OF PHYSICS, 1986, 172 (01) :136-155
[10]  
CAGINALP G, 1986, ARCH RATION MECH AN, V92, P205