Transposable elements in the mammalian germline: a comfortable niche or a deadly trap?

被引:125
作者
Zamudio, N. [1 ]
Bourc'his, D. [1 ]
机构
[1] Inst Curie, INSERM, U934, UMR 3215,Unite Genet & Biol Dev, F-75248 Paris 05, France
关键词
retrotransposon; host defense; germline; DNA methylation; piRNA; DE-NOVO METHYLATION; L1; RETROTRANSPOSITION; DNA METHYLATION; ENDOGENOUS RETROVIRUSES; LINE-1; RETROTRANSPOSON; CELL DEVELOPMENT; FAMILY PROTEINS; HUMAN GENOME; HISTONE H3; MOUSE;
D O I
10.1038/hdy.2010.53
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Retrotransposable elements comprise around 50% of the mammalian genome. Their activity represents a constant threat to the host and has prompted the development of adaptive control mechanisms to protect genome architecture and function. To ensure their propagation, retrotransposons have to mobilize in cells destined for the next generation. Accordingly, these elements are particularly well suited to transcriptional networks associated with pluripotent and germinal states in mammals. The relaxation of epigenetic control that occurs in the early developing germline constitutes a dangerous window in which retrotransposons can escape from host restraint and massively expand. What could be observed as risky behavior may turn out to be an insidious strategy developed by germ cells to sense retrotransposons and hold them back in check. Herein, we review recent insights that have provided a detailed picture of the defense mechanisms that concur toward retrotransposon silencing in mammalian genomes, and in particular in the germline. In this lineage, retrotransposons are hit at multiple stages of their life cycle, through transcriptional repression, RNA degradation and translational control. An organized cross-talk between PIWI-interacting small RNAs (piRNAs) and various nuclear and cytoplasmic accessories provides this potent and multilayered response to retrotransposon unleashing in early germ cells. Heredity (2010) 105, 92-104; doi:10.1038/hdy.2010.53; published online 5 May 2010
引用
收藏
页码:92 / 104
页数:13
相关论文
共 114 条
[1]   Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system [J].
Agrawal, A ;
Eastman, QM ;
Schatz, DG .
NATURE, 1998, 394 (6695) :744-751
[2]   A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice [J].
Aravin, Alexei A. ;
Sachidanandam, Ravi ;
Bourc'his, Deborah ;
Schaefer, Christopher ;
Pezic, Dubravka ;
Toth, Katalin Fejes ;
Bestor, Timothy ;
Hannon, Gregory J. .
MOLECULAR CELL, 2008, 31 (06) :785-799
[3]   Small RNA guides for de novo DNA methylation in mammalian germ cells [J].
Aravin, Alexei A. ;
Bourc'his, Deborah .
GENES & DEVELOPMENT, 2008, 22 (08) :970-975
[4]   The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race [J].
Aravin, Alexei A. ;
Hannon, Gregory J. ;
Brennecke, Julius .
SCIENCE, 2007, 318 (5851) :761-764
[5]   Developmentally regulated piRNA clusters implicate MILI in transposon control [J].
Aravin, Alexei A. ;
Sachidanandam, Ravi ;
Girard, Angelique ;
Fejes-Toth, Katalin ;
Hannon, Gregory J. .
SCIENCE, 2007, 316 (5825) :744-747
[6]   Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice [J].
Aravin, Alexei A. ;
van der Heijden, Godfried W. ;
Castaneda, Julio ;
Vagin, Vasily V. ;
Hannon, Gregory J. ;
Bortvin, Alex .
PLOS GENETICS, 2009, 5 (12)
[7]   Retroelements and the human genome: New perspectives on an old relation [J].
Bannert, N ;
Kurth, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 :14572-14579
[8]   Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction [J].
Barbot, W ;
Dupressoir, A ;
Lazar, V ;
Heidmann, T .
NUCLEIC ACIDS RESEARCH, 2002, 30 (11) :2365-2373
[9]   The Take and Give Between Retrotransposable Elements and their Hosts [J].
Beauregard, Arthur ;
Curcio, M. Joan ;
Belfort, Marlene .
ANNUAL REVIEW OF GENETICS, 2008, 42 :587-617
[10]   Creation of genomic methylation patterns [J].
Bestor, TH ;
Tycko, B .
NATURE GENETICS, 1996, 12 (04) :363-367