On the quantum reflection factor for the sinh-Gordon model with general boundary conditions

被引:3
作者
Chenaghlou, A [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2000年 / 15卷 / 29期
关键词
D O I
10.1142/S0217751X0000224X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The one loop quantum corrections to the classical reflection factor of the sinh-Gordon model are calculated partially for general boundary conditions. The model is studied under boundary conditions which are compatible with integrability, and in the framework of the conventional perturbation theory generalized to the affine Toda field theory. It is found that the general form of the related quantum corrections are hypergeometric functions.
引用
收藏
页码:4623 / 4654
页数:32
相关论文
共 25 条
[1]  
ABLIKIM M, 1999, THESIS U DURHAM
[2]  
ARFKEN G, 1985, MATH METHODS PHYSICI
[3]   QUANTUM S-MATRIX OF THE (1+1)-DIMENSIONAL TODD CHAIN [J].
ARINSHTEIN, AE ;
FATEYEV, VA ;
ZAMOLODCHIKOV, AB .
PHYSICS LETTERS B, 1979, 87 (04) :389-392
[4]   CLASSICALLY INTEGRABLE BOUNDARY-CONDITIONS FOR AFFINE TODA FIELD-THEORIES [J].
BOWCOCK, P ;
CORRIGAN, E ;
DOREY, PE ;
RIETDIJK, RH .
NUCLEAR PHYSICS B, 1995, 445 (2-3) :469-500
[5]   AFFINE TODA FIELD-THEORY AND EXACT S-MATRICES [J].
BRADEN, HW ;
CORRIGAN, E ;
DOREY, PE ;
SASAKI, R .
NUCLEAR PHYSICS B, 1990, 338 (03) :689-746
[6]   First order quantum corrections to the classical reflection factor of the Sinh-Gordon model [J].
Chenaghlou, A ;
Corrigan, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (28) :4417-4432
[7]   Boundary breathers in the sinh-Gordon model [J].
Corrigan, E ;
Delius, GW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (49) :8601-8614
[8]   AFFINE TODA FIELD-THEORY ON A HALF-LINE [J].
CORRIGAN, E ;
DOREY, PE ;
RIETDIJK, RH ;
SASAKI, R .
PHYSICS LETTERS B, 1994, 333 (1-2) :83-91
[9]   On duality and reflection factors for the sinh-Gordon model with a boundary [J].
Corrigan, E .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1998, 13 (16) :2709-2722
[10]  
CORRIGAN E, 1995, PROG THEOR PHYS SUPP, P143, DOI 10.1143/PTPS.118.143