A powreful finite mixture model based on the generalized Dirichlet distribution: Unsupervised learning and applications

被引:37
作者
Bouguila, N [1 ]
Ziou, D [1 ]
机构
[1] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada
来源
PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1 | 2004年
关键词
D O I
10.1109/ICPR.2004.1334107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new finite mixture model based on a generalization of the Dirichlet distribution. For the estimation of the parameters of this mixture we use a GEM (Generalized Expectation Maximization) algorithm Based on a Newton-Raphson step. The experimental results involve the comparison of the performance of Gaussian and generalized Dirichlet mixtures in the classification of several pattern-recognition data sets.
引用
收藏
页码:280 / 283
页数:4
相关论文
共 14 条
  • [1] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [2] Anderson E., 1935, Bulletin of the American IRIS Society, V59, P2
  • [3] [Anonymous], 2000, WILEY SERIES PROBABI
  • [4] MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING
    BANFIELD, JD
    RAFTERY, AE
    [J]. BIOMETRICS, 1993, 49 (03) : 803 - 821
  • [5] BOUGUILA N, 2004, IN PRESS IEEE T IMAG
  • [6] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [7] Data clustering: A review
    Jain, AK
    Murty, MN
    Flynn, PJ
    [J]. ACM COMPUTING SURVEYS, 1999, 31 (03) : 264 - 323
  • [8] Kaufman L., 1990, FINDING GROUPS DATA
  • [9] On finding the number of clusters
    Kothari, R
    Pitts, D
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (04) : 405 - 416
  • [10] McLachlan G. J., 1997, EM ALGORITHM EXTENSI