QUANTUM ESTIMATION FOR QUANTUM TECHNOLOGY

被引:1138
作者
Paris, Matteo G. A. [1 ,2 ,3 ]
机构
[1] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[2] Udr Milano, CNSIM, I-20133 Milan, Italy
[3] ISI Fdn, I-10133 Turin, Italy
关键词
Quantum estimation; Fisher information; PARAMETER-ESTIMATION; OBSERVABLES; INFORMATION; EXTENSION; DISTANCE; SYSTEMS; STATES; PHASE; LIGHT;
D O I
10.1142/S0219749909004839
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Several quantities of interest in quantum information, including entanglement and purity, are nonlinear functions of the density matrix and cannot, even in principle, correspond to proper quantum observables. Any method aimed to determine the value of these quantities should resort to indirect measurements and thus corresponds to a parameter estimation problem whose solution, i.e. the determination of the most precise estimator, unavoidably involves an optimization procedure. We review local quantum estimation theory and present explicit formulas for the symmetric logarithmic derivative and the quantum Fisher information of relevant families of quantum states. Estimability of a parameter is defined in terms of the quantum signal-to-noise ratio and the number of measurements needed to achieve a given relative error. The connections between the optmization procedure and the geometry of quantum statistical models are discussed. Our analysis allows to quantify quantum noise in the measurements of non observable quantities and provides a tools for the characterization of signals and devices in quantum technology.
引用
收藏
页码:125 / 137
页数:13
相关论文
共 43 条
[1]   Fisher information in quantum statistics [J].
Barndorff-Nielsen, OE ;
Gill, RD .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (24) :4481-4490
[2]   Operational interpretation for global multipartite entanglement [J].
Boixo, S. ;
Monras, A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (10)
[3]   Generalized uncertainty relations: Theory, examples, and Lorentz invariance [J].
Braunstein, SL ;
Caves, CM ;
Milburn, GJ .
ANNALS OF PHYSICS, 1996, 247 (01) :135-173
[4]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[6]   Optimal estimation of squeezing [J].
Chiribella, G. ;
D'Ariano, G. M. ;
Sacchi, M. F. .
PHYSICAL REVIEW A, 2006, 73 (06)
[7]  
Cramer, 1999, MATH METHODS STAT
[8]   On the general problem of quantum phase estimation [J].
D'Ariano, GM ;
Macchiavello, C ;
Sacchi, ME .
PHYSICS LETTERS A, 1998, 248 (2-4) :103-108
[9]   Optimal quantum estimation of the coupling between two bosonic modes [J].
D'Ariano, GM ;
Paris, MGA ;
Perinotti, P .
JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2001, 3 (05) :337-340
[10]   Transmittivity measurements by means of squeezed vacuum light [J].
D'Auria, V. ;
de Lisio, C. ;
Porzio, A. ;
Solimeno, S. ;
Paris, Matteo G. A. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (05) :1187-1198