Shared control of hepatic glycogen synthesis by glycogen synthase and glucokinase

被引:36
作者
Gomis, RR [1 ]
Ferrer, JC [1 ]
Guinovart, JJ [1 ]
机构
[1] Univ Barcelona, Dept Bioquim & Biol Mol, E-08028 Barcelona, Spain
关键词
adenovirus; glucose; hepatocyte; liver metabolism;
D O I
10.1042/0264-6021:3510811
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have used recombinant adenoviruses (AdCMV-RLGS and AdCMV-GK) to overexpress the liver isoforms of glycogen synthase (GS) and glucokinase (GK) in primary cultured rat hepatocytes. Glucose activated overexpressed GS in a dose-dependent manner and caused the accumulation of larger amounts of glycogen in the AdCMV-RLGS-treated hepatocytes. The concentration of intermediate metabolites of the glycogenic pathway, such as glucose 6-phosphate (Glc-6-P) and UDP-glucose, were not significantly altered. GK overexpression also conferred on the hepatocyte an enhanced capacity to synthesize glycogen in response to glucose, as described previously [Seoane, Gomez-Foix, O'Doherty, Gomez-Ara, Newgard and Guinovart (1996) J. Biol. Chem. 271, 23756-23760], although, in this case, they accumulated Glc-6-P. When GS and GK were simultaneously overexpressed, the accumulation of glycogen was enhanced in comparison with cells overexpressing either GS or GK. Our results are consistent with the hypothesis that liver GS catalyses the rate-limiting step of hepatic glycogen synthesis. However, hepatic glycogen deposition from glucose is submitted to a system of shared control in which the 'controller', GS, is, in turn, controlled by GK. This control is indirectly exerted through Glc-6-P, which 'switches on' GS dephosphorylation and activation.
引用
收藏
页码:811 / 816
页数:6
相关论文
共 29 条
[1]   INTRACELLULAR BINDING OF GLUCOKINASE IN HEPATOCYTES AND TRANSLOCATION BY GLUCOSE, FRUCTOSE AND INSULIN [J].
AGIUS, L ;
PEAK, M .
BIOCHEMICAL JOURNAL, 1993, 296 :785-796
[2]   Glucose-6-phosphatase overexpression lowers glucose 6-phosphate and inhibits glycogen synthesis and glycolysis in hepatocytes without affecting glucokinase translocation - Evidence against feedback inhibition of glucokinase [J].
Aiston, S ;
Trinh, KY ;
Lange, AJ ;
Newgard, CB ;
Agius, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (35) :24559-24566
[3]   Metabolic engineering with recombinant adenoviruses [J].
Antinozzi, PA ;
Berman, HK ;
O'Doherty, RM ;
Newgard, CB .
ANNUAL REVIEW OF NUTRITION, 1999, 19 :511-544
[4]   Control of glycogen synthesis is shared between glucose transport and glycogen synthase in skeletal muscle fibers [J].
Azpiazu, I ;
Manchester, J ;
Skurat, AV ;
Roach, PJ ;
Lawrence, JC .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2000, 278 (02) :E234-E243
[5]  
BAI G, 1990, J BIOL CHEM, V265, P7843
[6]   Overexpression of muscle glycogen phosphorylase in cultured human muscle fibers causes increased glucose consumption and nonoxidative disposal [J].
Baque, S ;
Guinovart, JJ ;
GomezFoix, AM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (05) :2594-2598
[7]  
BECKER TC, 1994, METHOD CELL BIOL, V43, P161
[8]   Overexpression of protein targeting to glycogen (PTG) in rat hepatocytes causes profound activation of glycogen synthesis independent of normal hormone- and substrate-mediated regulatory mechanisms [J].
Berman, HK ;
O'Doherty, RM ;
Anderson, P ;
Newgard, CB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (41) :26421-26425
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   RAPID METHOD FOR DETERMINATION OF GLYCOGEN CONTENT AND RADIOACTIVITY IN SMALL QUANTITIES OF TISSUE OR ISOLATED HEPATOCYTES [J].
CHAN, TM ;
EXTON, JH .
ANALYTICAL BIOCHEMISTRY, 1976, 71 (01) :96-105