Structural features and thermodynamics of the J4/5 loop from the Candida albicans and Candida dubliniensis group I introns

被引:19
作者
Znosko, BM
Kennedy, SD
Wille, PC
Krugh, TR
Turner, DH
机构
[1] Univ Rochester, Dept Chem, Sch Med & Dent, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Biochem & Biophys, Sch Med & Dent, Rochester, NY 14642 USA
[3] Univ Rochester, Dept Pediat, Sch Med & Dent, Rochester, NY 14642 USA
[4] Univ Rochester, Dept Pediat, Ctr Human Genet & Mol Pediat Dis, Rochester, NY 14642 USA
关键词
D O I
10.1021/bi049256y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The J4/5 loop of group I introns has tertiary interactions with the P1 helix that position the P1 substrate for the self-splicing reaction. The J4/5 loop of Candida albicans and Candida dubliniensis, 5'GAAGG3'/3'UAAUU5', potentially contains two A.A pairs flanked by one G.U pair on one side and two G.U pairs on the other side. Results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments with a mimic of the C. albicans and C. dubliniensis J4/5 loop are consistent with the adenosines forming tandem sheared A.A pairs with a cross-strand stack and only the G.U pair not adjacent to an A.A pair forming a static wobble G.U pair. The two G.U pairs adjacent to the tandem A.A pairs are likely in a dynamic equilibrium between multiple conformations. Although Co(NH3)(6)(3+) stabilizes the loop by several kilocalories per mole at 37degreesC, addition of Mg2+ or Co(NH3)(6)(3+) has no effect on the structure of the loop. The tandem G-U pairs provide a pocket of negative charge for Co(NH3)(6)(3+) to bind. The results contribute to understanding the structure and dynamics of purine-rich internal loops and potential G.U pairs adjacent to internal loops.
引用
收藏
页码:15822 / 15837
页数:16
相关论文
共 86 条
[1]   Crystal structure of a self-splicing group I intron with both exons [J].
Adams, PL ;
Stahley, MR ;
Kosek, AB ;
Wang, JM ;
Strobel, SA .
NATURE, 2004, 430 (6995) :45-50
[2]   DIVALENT METAL-ION BINDING TO A CONSERVED WOBBLE PAIR DEFINING THE UPSTREAM SITE OF CLEAVAGE OF GROUP-I SELF-SPLICING INTRONS [J].
ALLAIN, FHT ;
VARANI, G .
NUCLEIC ACIDS RESEARCH, 1995, 23 (03) :341-350
[3]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[4]   THE 3-A CRYSTAL-STRUCTURE OF YEAST INITIATOR TRANSFER-RNA - FUNCTIONAL IMPLICATIONS IN INITIATOR ELONGATOR DISCRIMINATION [J].
BASAVAPPA, R ;
SIGLER, PB .
EMBO JOURNAL, 1991, 10 (10) :3105-3111
[5]   STABILITY OF RIBONUCLEIC-ACID DOUBLE-STRANDED HELICES [J].
BORER, PN ;
DENGLER, B ;
TINOCO, I ;
UHLENBECK, OC .
JOURNAL OF MOLECULAR BIOLOGY, 1974, 86 (04) :843-853
[6]  
Bullock TL, 2000, NAT STRUCT BIOL, V7, P497
[7]   NMR structures of r(GCA(G)under-barGC(G)under-barUGC)2 and determinants of stability for single guanosine-guanosine base pairs [J].
Burkard, ME ;
Turner, DH .
BIOCHEMISTRY, 2000, 39 (38) :11748-11762
[8]  
Cannone J. J, 2002, BMC BIOINF, V3
[9]   Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics [J].
Carter, AP ;
Clemons, WM ;
Brodersen, DE ;
Morgan-Warren, RJ ;
Wimberly, BT ;
Ramakrishnan, V .
NATURE, 2000, 407 (6802) :340-348
[10]   Metal-binding sites in the major groove of a large ribozyme domain [J].
Cate, JH ;
Doudna, JA .
STRUCTURE, 1996, 4 (10) :1221-1229