Approximate explicit constrained linear model predictive control via orthogonal search tree

被引:142
作者
Johansen, TA [1 ]
Grancharova, A
机构
[1] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7491 Trondheim, Norway
[2] Bulgarian Acad Sci, Inst Control & Syst Res, BU-1113 Sofia, Bulgaria
关键词
constrained control; optimal control; piecewise linear control;
D O I
10.1109/TAC.2003.811259
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Solutions to constrained linear model predictive. control problems can be precomputed;offline in an explicit form as a piecewise linear state feedback on a polyhedral partition of the state-space, avoiding real-time optimization., We suggest an algorithm that will determine an approximate explicit piecewise linear state feedback by imposing an orthogonal search tree structure on the partition. This leads to. a real-time computational complexity that is logarithmic in the number of regions in the partition, and the algorithm yields guarantees on the suboptimality, asymptotic stability and constraint fulfillment.
引用
收藏
页码:810 / 815
页数:6
相关论文
共 22 条
[1]  
[Anonymous], NEURODYNAMIC PROGRAM
[2]  
[Anonymous], 2000, Geometry, Spinors and Applications
[3]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[4]   Suboptimal explicit receding horizon control via approximate multiparametric quadratic programming [J].
Bemporad, A ;
Filippi, C .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (01) :9-38
[5]  
Bemporad A, 2001, IEEE DECIS CONTR P, P4851, DOI 10.1109/CDC.2001.980975
[6]  
Bemporad A, 2000, P AMER CONTR CONF, P872, DOI 10.1109/ACC.2000.876624
[7]  
Borrelli F, 2001, IEEE DECIS CONTR P, P1187, DOI 10.1109/CDC.2001.981046
[8]   On constrained infinite-time linear quadratic optimal control [J].
Chmielewski, D ;
Manousiouthakis, V .
SYSTEMS & CONTROL LETTERS, 1996, 29 (03) :121-129
[9]  
Fiacco A.V., 1983, INTRO SENSITIVITY ST
[10]   LINEAR-SYSTEMS WITH STATE AND CONTROL CONSTRAINTS - THE THEORY AND APPLICATION OF MAXIMAL OUTPUT ADMISSIBLE-SETS [J].
GILBERT, EG ;
TAN, KT .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (09) :1008-1020