Parameter estimation techniques: A tutorial with application to conic fitting

被引:561
作者
Zhang, ZY
机构
[1] INRIA, F-06902 Sophia-Antipolis Cedex
关键词
parameter estimation; least-squares; bias correction; kalman filtering; robust regression;
D O I
10.1016/S0262-8856(96)01112-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Almost all problems in computer vision are related in one form or another to the problem of estimating parameters from noisy data. In this tutorial, we present what is probably the most commonly used techniques for parameter estimation. These include linear least-squares (pseudo-inverse and eigen analysis); orthogonal least-squares; gradient-weighted least-squares; bias-corrected renormalization; Kalman filtering; and robust techniques (clustering, regression diagnostics, M-estimators, least median of squares). Particular attention has been devoted to discussions about the choice of appropriate minimization criteria and the robustness of the different techniques. Their application to conic fitting is described.
引用
收藏
页码:59 / 76
页数:18
相关论文
共 31 条
[1]  
[Anonymous], ENCY STAT SCI
[2]  
[Anonymous], 1982, Pattern recognition: A statistical approach
[3]  
Ayache N., 1991, ARTIFICIAL VISION MO
[4]  
Ballard D.H., 1982, Computer Vision
[5]  
BARNETT V, 1984, OUTLIERS STATISTICAL
[6]  
Beck JV, 1977, WILEY SERIES PROBABI
[7]  
Belsley DA, 1980, Regression diagnostics: Identifying influential data and sources of collinearity
[8]  
BOLLES RC, 1981, 7TH P INT JOINT C AR, P637
[9]   FITTING CONIC SECTIONS TO SCATTERED DATA [J].
BOOKSTEIN, FL .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1979, 9 (01) :56-71
[10]  
CHAN YT, 1995, GRAPH MODEL IM PROC, V57, P527, DOI 10.1006/gmip.1995.1043