Mammalian oocytes undergo significant growth during oogenesis and experience extensive cytoplasmic and nuclear modifications immediately before ovulation in a process commonly referred to as oocyte maturation. These changes are intended to maximize the developmental success after fertilization. Entry of a spermatozoon into the oocyte, which occurs a few hours after ovulation, initiates long-lasting oscillations in the free intracellular calcium ([Ca2+](i)) that are responsible for all events of oocyte activation and the initiation of the developmental programme that often culminates in the birth of young. Nevertheless, the cellular and molecular changes that occur during maturation to optimize development are transient, and exhibit rapid deterioration. Moreover, fertilization of oocytes after an extended residence in the oviduct (or in culture) initiates a different developmental programme, one that is characterized by fragmentation, programmed cell death, and abnormal development. Inasmuch as [Ca2+](i) oscillations can trigger both developmental programmes in mammalian oocytes, this review addresses one of the mechanism(s) possibly used by spermatozoa to initiate these persistent [Ca2+](i) responses, and the cellular and molecular changes that may underlie the postovulatory cellular fragmentation of ageing mammalian oocytes.