Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation

被引:76
作者
Hill, Bradford G. [1 ,2 ]
Higdon, Ashlee N. [1 ,2 ]
Dranka, Brian P. [1 ,2 ]
Darley-Usmar, Victor M. [1 ,2 ]
机构
[1] Univ Alabama Birmingham, Dept Pathol, Birmingham, AL 35294 USA
[2] Univ Alabama Birmingham, Ctr Free Rad Biol, Birmingham, AL 35294 USA
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2010年 / 1797卷 / 02期
关键词
Mitochondria; Oxidative stress; Glutathionylation; Glycolysis; Extracellular flux; Reserve capacity; S-GLUTATHIOLATION; GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; REVERSIBLE OXIDATION; ALDOSE REDUCTASE; MIXED-DISULFIDES; REDOX REGULATION; GLUTATHIONYLATION; IDENTIFICATION; OXIDANT; STRESS;
D O I
10.1016/j.bbabio.2009.11.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein thiolation by glutathione is a reversible and regulated post-translational modification that is increased in response to oxidants and nitric oxide. Because many mitochondrial enzymes contain critical thiol residues, it has been hypothesized that thiolation reactions regulate cell metabolism and survival. However, it has been difficult to differentiate the biological effects due to protein thiolation from other oxidative protein modifications. In this study, we used diamide to titrate protein glutathiolation and examined its impact on glycolysis, mitochondrial function, and cell death in rat aortic smooth muscle cells. Treatment of cells with diamide increased protein glutathiolation in a concentration-dependent manner and had comparably little effect on protein-protein disulfide formation. Diamide increased mitochondrial proton leak and decreased ATP-linked mitochondrial oxygen consumption and cellular bioenergetic reserve capacity. Concentrations of diamide above 200 mu M promoted acute bioenergetic failure and caused cell death, whereas lower concentrations of diamide led to a prolonged increase in glycolytic flux and were not associated with loss of cell viability. Depletion of glutathione using buthionine sulfoximine had no effect on basal protein thiolation or cellular bioenergetics but decreased diamide-induced protein glutathiolation and sensitized the cells to bioenergetic dysfunction and death. The effects of diamide on cell metabolism and viability were fully reversible upon addition of dithiothreitol. These data suggest that protein thiolation modulates key metabolic processes in both the mitochondria and cytosol. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 60 条
[1]   S-glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide [J].
Adachi, T ;
Weisbrod, RM ;
Pimentel, DR ;
Ying, J ;
Sharov, VS ;
Schöneich, C ;
Cohen, RA .
NATURE MEDICINE, 2004, 10 (11) :1200-1207
[2]   S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells [J].
Adachi, T ;
Pimentel, DR ;
Heibeck, T ;
Hou, XY ;
Lee, YJ ;
Jiang, BB ;
Ido, Y ;
Cohen, RA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (28) :29857-29862
[3]   A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein [J].
Bass, R ;
Ruddock, LW ;
Klappa, P ;
Freedman, RB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (07) :5257-5262
[4]   Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins - Implications for mitochondrial redox regulation and antioxidant defense [J].
Beer, SM ;
Taylor, ER ;
Brown, SE ;
Dahm, CC ;
Costa, NJ ;
Runswick, MJ ;
Murphy, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (46) :47939-47951
[5]   THE CAUSES AND FUNCTIONS OF MITOCHONDRIAL PROTON LEAK [J].
BRAND, MD ;
CHIEN, LF ;
AINSCOW, EK ;
ROLFE, DFS ;
PORTER, RK .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1994, 1187 (02) :132-139
[6]   Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis [J].
Brennan, JP ;
Wait, R ;
Begum, S ;
Bell, JR ;
Dunn, MJ ;
Eaton, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (40) :41352-41360
[7]   Direct evidence for S-nitrosation of mitochondrial complex I [J].
Burwell, LS ;
Nadtochiy, SM ;
Tompkins, AJ ;
Young, S ;
Brookes, PS .
BIOCHEMICAL JOURNAL, 2006, 394 :627-634
[8]   Modification of aldose reductase by S-nitrosoglutathione [J].
Chandra, A ;
Srivastava, S ;
Petrash, JM ;
Bhatnagar, A ;
Srivastava, SK .
BIOCHEMISTRY, 1997, 36 (50) :15801-15809
[9]   Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase [J].
Chen, Chwen-Lih ;
Zhang, Liwen ;
Yeh, Alexander ;
Chen, Chun-An ;
Green-Church, Kari B. ;
Zweier, Jay L. ;
Chen, Yeong-Renn .
BIOCHEMISTRY, 2007, 46 (19) :5754-5765
[10]   Mitochondrial complex II in the post-ischemic heart - Oxidative injury and the role of protein S-glutathionylation [J].
Chen, Yeong-Renn ;
Chen, Chwen-Lih ;
Pfeiffer, Douglas R. ;
Zweier, Jay L. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (45) :32640-32654