Genetic analysis of cold-tolerance of photosynthesis in maize

被引:152
作者
Fracheboud, Y [1 ]
Jompuk, C
Ribaut, JM
Stamp, P
Leipner, J
机构
[1] Swiss Fed Inst Technol, Inst Plant Sci, Zurich, Switzerland
[2] CIMMYT, Mexico City 06600, DF, Mexico
关键词
chilling-tolerance; chlorophyll fluorescence; chronic photoinhibition; QTL;
D O I
10.1007/s11103-004-3353-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The genetic basis of cold-tolerance was investigated by analyzing the quantitative trait loci (QTL) of an F-2:3 population derived from a cross between two lines bred for contrasting cold-tolerance using chlorophyll fluorescence as a selection tool. Chlorophyll fluorescence parameters, CO2 exchange rate, leaf greenness, shoot dry matter and shoot nitrogen content were determined in plants grown under controlled conditions at 25/22degreesC or 15/13degreesC (day/night). The analysis revealed the presence of 18 and 19 QTLs ( LOD>3.5) significantly involved in the variation of nine target traits in plants grown at 25/22degreesC and 15/13degreesC, respectively. Only four QTLs were clearly identified in both temperatures regimes for the same traits, demonstrating that the genetic control of the performance of the photosynthetic apparatus differed, depending on the temperature regime. A major QTL for the cold-tolerance of photosynthesis was identified on chromosome 6. This QTL alone explained 37.4% of the phenotypic variance in the chronic photoinhibition at low temperature and was significantly involved in the expression of six other traits, including the rate of carbon fixation and shoot dry matter accumulation, indicating that the tolerance to photoinhibition is a key factor in the tolerance of maize to low growth temperature. An additional QTL on chromosomes 2 corresponded to a QTL identified previously in another population, suggesting some common genetic basis of the cold-tolerance of photosynthesis in different maize germplasms.
引用
收藏
页码:241 / 253
页数:13
相关论文
共 33 条
[1]   Identification of quantitative trait loci for nitrogen use efficiency in maize [J].
Agrama, HAS ;
Zakaria, AG ;
Said, FB ;
Tuinstra, M .
MOLECULAR BREEDING, 1999, 5 (02) :187-195
[2]   Mapping of QTLs associated with cold tolerance during the vegetative stage in rice [J].
Andaya, VC ;
Mackill, DJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 (392) :2579-2585
[3]   CHARACTERIZATION OF CHILLING EFFECTS ON PHOTOSYNTHETIC PERFORMANCE OF MAIZE CROPS DURING EARLY-SEASON GROWTH USING CHLOROPHYLL FLUORESCENCE [J].
ANDREWS, JR ;
FRYER, MJ ;
BAKER, NR .
JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 (290) :1195-1203
[4]  
[Anonymous], 1994, LAB PROTOCOLS CIMMYT
[5]  
[Anonymous], 5 WORLD C GEN APPL L
[6]   Reappraisal of the currently prevailing model of starch biosynthesis in photosynthetic tissues:: A proposal involving the cytosolic production of ADP-glucose by sucrose synthase and occurrence of cyclic turnover of starch in the chloroplast [J].
Baroja-Fernández, E ;
Muñoz, FJ ;
Akazawa, T ;
Pozueta-Romero, J .
PLANT AND CELL PHYSIOLOGY, 2001, 42 (12) :1311-1320
[7]  
Basten CJ, 2002, QTL CARTOGRAPHER REF
[8]   BUNDLE SHEATH DEFECTIVE2, a novel protein required for post-translational regulation of the rbcL gene of maize [J].
Brutnell, TP ;
Sawers, RJH ;
Mant, A ;
Langdale, JA .
PLANT CELL, 1999, 11 (05) :849-864
[9]   Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.) [J].
Fracheboud, Y ;
Ribaut, JM ;
Vargas, M ;
Messmer, R ;
Stamp, P .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (376) :1967-1977
[10]   Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.) [J].
Fracheboud, Y ;
Haldimann, P ;
Leipner, J ;
Stamp, P .
JOURNAL OF EXPERIMENTAL BOTANY, 1999, 50 (338) :1533-1540