Integrable dissipative structures in the gauge theory of gravity

被引:24
作者
Martina, L [1 ]
Pashaev, OK
Soliani, G
机构
[1] Univ Lecce, Dipartimento Fis, I-73100 Lecce, Italy
[2] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy
[3] Joint Inst Nucl Res, Dubna, Russia
关键词
D O I
10.1088/0264-9381/14/12/005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Jackiw-Teitelboim gauge formulation of (1 + 1)-dimensional gravity allows us to relate different gauge-fixing conditions to integrable hierarchies of evolution equations. We show that the equations for the zweibein fields can be written as a pair of time-reversed evolution equations of the reaction-diffusion type, admitting dissipative solutions. The spectral parameter for the related Lax pair appears as the constant-valued spin connection associated with the S0(1, 1) gauge symmetry. Spontaneous breaking of the non-compact symmetry and irreversible evolution are discussed.
引用
收藏
页码:3179 / 3186
页数:8
相关论文
共 26 条
[1]   ON INDUCED GRAVITY IN 2D TOPOLOGICAL THEORIES [J].
AMATI, D ;
ELITZUR, S ;
RABINOVICI, E .
NUCLEAR PHYSICS B, 1994, 418 (1-2) :45-80
[2]  
Arnold V. I., 1968, Ergodic Problems of Classical Mechanics, V9
[3]   TOPOLOGICAL FIELD-THEORY [J].
BIRMINGHAM, D ;
BLAU, M ;
RAKOWSKI, M ;
THOMPSON, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 209 (4-5) :129-340
[4]  
CARTAN E, 1937, THEORIE GROUPES FINI
[5]   QUANTUM DISSIPATION [J].
CELEGHINI, E ;
RASETTI, M ;
VITIELLO, G .
ANNALS OF PHYSICS, 1992, 215 (01) :156-170
[6]   TOPOLOGICAL GRAVITY IN 1+1 DIMENSIONS [J].
CHAMSEDDINE, AH ;
WYLER, D .
NUCLEAR PHYSICS B, 1990, 340 (2-3) :595-616
[7]   HAMILTONIAN REDUCTION OF UNCONSTRAINED AND CONSTRAINED SYSTEMS [J].
FADDEEV, L ;
JACKIW, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (17) :1692-1694
[8]  
HAKEN H, 1987, SYNERGETICS
[9]   PARTICLE CREATION BY BLACK-HOLES [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 43 (03) :199-220
[10]   GAUGE-THEORY OF TWO-DIMENSIONAL QUANTUM-GRAVITY [J].
ISLER, K ;
TRUGENBERGER, CA .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :834-836