Q-Ball imaging

被引:1446
作者
Tuch, DS
机构
[1] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, NMR Ctr, Charlestown, MA USA
[2] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
关键词
diffusion MRI; diffusion tensor imaging; high angular; resolution diffusion imaging; tractography;
D O I
10.1002/mrm.20279
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic resonance diffusion tensor imaging (DTI) provides a powerful tool for mapping neural histoarchitecture in vivo. However, DTI can only resolve a single fiber orientation within each imaging voxel due to the constraints of the tensor model. For example, DTI cannot resolve fibers crossing, bending, or twisting within an individual voxel. Intravoxel fiber crossing can be resolved using q-space diffusion imaging, but q-space imaging requires large pulsed field gradients and time-intensive sampling. It is also possible to resolve intravoxel fiber crossing using mixture model decomposition of the high angular resolution diffusion imaging (HARDI) signal, but mixture modeling requires a model of the underlying diffusion process. Recently, it has been shown that the HARDI signal can be reconstructed model-independently using a spherical tomographic inversion called the Funk-Radon transform, also known as the spherical Radon transform. The resulting imaging method, termed q-ball imaging, can resolve multiple intravoxel fiber orientations and does not require any assumptions on the diffusion process such as Gaussianity or multi-Gaussianity. The present paper reviews the theory of q-ball imaging and describes a simple linear matrix formulation for the q-ball reconstruction based on spherical radial basis function interpolation. Open aspects of the q-ball reconstruction algorithm are discussed. (C) 2004 Wiley-Liss, Inc.
引用
收藏
页码:1358 / 1372
页数:15
相关论文
共 41 条
  • [1] Analysis of partial volume effects in diffusion-tensor MRI
    Alexander, AL
    Hasan, KM
    Lazar, M
    Tsuruda, JS
    Parker, DL
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (05) : 770 - 780
  • [2] Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data
    Alexander, DC
    Barker, GJ
    Arridge, SR
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (02) : 331 - 340
  • [3] [Anonymous], TEXTURE ANISOTROPY
  • [4] Assaf Y, 1999, NMR BIOMED, V12, P335, DOI 10.1002/(SICI)1099-1492(199910)12:6<335::AID-NBM581>3.0.CO
  • [5] 2-A
  • [6] High b-value q-space analyzed diffusion-weighted MRI:: Application to multiple sclerosis
    Assaf, Y
    Ben-Bashat, D
    Chapman, J
    Peled, S
    Biton, IE
    Kafri, M
    Segev, Y
    Hendler, T
    Korczyn, AD
    Graif, M
    Cohen, Y
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (01) : 115 - 126
  • [7] MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING
    BASSER, PJ
    MATTIELLO, J
    LEBIHAN, D
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (01) : 259 - 267
  • [8] The basis of anisotropic water diffusion in the nervous system - a technical review
    Beaulieu, C
    [J]. NMR IN BIOMEDICINE, 2002, 15 (7-8) : 435 - 455
  • [9] Characterization and propagation of uncertainty in diffusion-weighted MR imaging
    Behrens, TEJ
    Woolrich, MW
    Jenkinson, M
    Johansen-Berg, H
    Nunes, RG
    Clare, S
    Matthews, PM
    Brady, JM
    Smith, SM
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) : 1077 - 1088
  • [10] Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids
    Callaghan, PT
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (04) : 599 - 670